Metathesis by Partner Interchange in σ‐Bond Ligands: Expanding Applications of the σ‐CAM Mechanism

Author:

Perutz Robin N.1ORCID,Sabo‐Etienne Sylviane2,Weller Andrew S.1ORCID

Affiliation:

1. Department of Chemistry University of York York YO10 5DD UK

2. CNRS LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne, BP 44099 F-31077 Toulouse Cedex 4 France

Abstract

AbstractIn 2007 two of us defined the σ‐Complex Assisted Metathesis mechanism (Perutz and Sabo‐Etienne,Angew. Chem. Int. Ed.2007,46, 2578–2592), that is, the σ‐CAM concept. This new approach to reaction mechanisms brought together metathesis reactions involving the formation of a variety of metal–element bonds through partner‐interchange of σ‐bond complexes. The key concept that defines a σ‐CAM process is asingletransition state for metathesis that is connected by two intermediates that are σ‐bond complexes while the oxidation state of the metal remains constant in precursor, intermediates and product. This mechanism is appropriate in situations where σ‐bond complexes have been isolated or computed as well‐defined minima. Unlike several other mechanisms, it does not define the nature of the transition state. In this review, we highlight advances in the characterization and dynamic rearrangements of σ‐bond complexes, most notably alkane and zincane complexes, but also different geometries of silane and borane complexes. We set out a selection of catalytic and stoichiometric examples of the σ‐CAM mechanism that are supported by strong experimental and/or computational evidence. We then draw on these examples to demonstrate that the scope of the σ‐CAM mechanism has expanded to classes of reaction not envisaged in 2007 (additional σ‐bond ligands, agostic complexes, sp2‐carbon, surfaces). Finally, we provide a critical comparison to alternative mechanisms for metathesis of metal–element bonds.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3