Partial least squares regression with multiple domains

Author:

Mikulasek Bianca1,Fonseca Diaz Valeria2ORCID,Gabauer David3,Herwig Christoph1,Nikzad‐Langerodi Ramin3ORCID

Affiliation:

1. TU Wien Vienna Austria

2. KU Leuven Leuven Belgium

3. Software Competence Center Hagenberg (SCCH) GmbH Hagenberg Austria

Abstract

AbstractThis paper introduces the multiple domain‐invariant partial least squares (mdi‐PLS) method, which generalizes the recently introduced domain‐invariant partial least squares method (di‐PLS). In contrast to di‐PLS which solely allows transferring of knowledge from a single source to a single target domain, the proposed approach enables the incorporation of data from an arbitrary number of domains. Additionally, mdi‐PLS offers a high level of flexibility by accepting labeled (supervised) and unlabeled (unsupervised) data to cope with dataset shifts. We demonstrate the application of the mdi‐PLS method on a simulated and one real‐world dataset. Our results show a clear outperformance of both PLS and di‐PLS when data from multiple related domains are available for training multivariate calibration models underpinning the benefit of mdi‐PLS.

Publisher

Wiley

Subject

Applied Mathematics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3