Present possibilities of thin‐layer analysis by GDOES

Author:

Hoffmann Volker,Dorka Roland,Wilken Ludger,Hodoroaba Vasile‐Dan,Wetzig Klaus

Abstract

AbstractThe analysis of thin layers of thickness ∼100 nm has become a new field of application for glow discharge optical emission spectroscopy (GDOES). In this paper an overview is given of the experiences and possibilities gained by the authors in later years at their research, development and application of GDOES.During GDOES analysis of a multilayer system the depth resolution was determined using the inverse maximal slope method. Under optimized discharge conditions a depth resolution of ∼25 nm at 100 nm depth was achieved. The gas flow in a Grimm‐type source for glow discharge mass spectrometry (GDMS) was simulated and a correlation between calculated pressure and crater shape was found. Cleanness of the sample and source turned out to be essential for a fast stabilization time and reduction of the influence of light elements and molecules. Thereby, a 10 nm layer at the top surface of a sample could be quantified. Apart from the influence of density, the reflectivity of the sample surface is discussed. It is shown that a high sample reflectivity can cause up to 100% more light to be measured by the spectrometer. Copyright © 2003 John Wiley & Sons, Ltd.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3