Reinforcing Tissue‐Engineered Cartilage: Nanofibrillated Cellulose Enhances Mechanical Properties of Alginate Dialdehyde–Gelatin Hydrogel

Author:

Chayanun Slila123,Soufivand Anahita Ahmadi4,Faber Jessica4,Budday Silvia4,Lohwongwatana Boonrat25,Boccaccini Aldo R.3ORCID

Affiliation:

1. Biomedical Engineering Program Faculty of Engineering Chulalongkorn University Bangkok 10330 Thailand

2. Biomedical Engineering Research Center Chulalongkorn University Bangkok 10330 Thailand

3. Institute of Biomaterials Department of Materials Science and Engineering University of Erlangen-Nuremberg Cauerstr. 6 91058 Erlangen Germany

4. Institute of Continuum Mechanics and Biomechanics Department of Mechanical Engineering University of Erlangen‐Nuremberg 91058 Erlangen Germany

5. Department of Metallurgical Engineering Faculty of Engineering Chulalongkorn University Bangkok 10330 Thailand

Abstract

Cartilage tissue engineering offers a promising option for treating osteochondral defects. Alginate dialdehyde–gelatin (ADA–GEL) hydrogel has been explored as promising material for soft tissue scaffolds; however, its low stiffness has posed a constraint to load bearing applications. Herein, this limitation is addressed by introducing nanofibrillated cellulose (NFC) into the ADA–GEL matrix. The effect of NFC on the physicochemical properties of hydrogels is evaluated. Fourier transform infrared spectra demonstrate no chemical interaction between NFC and ADA–GEL, while scanning electron microscopy pictures reveal NFC fibers embedded in the hydrogel matrix, thus confirming the fiber‐reinforced composite hypothesis. NFC‐reinforced ADA–GEL (AG‐N) composite hydrogels exhibit increased stiffness, with a maximum compressive effective modulus of 19.6 ± 3.0 kPa at 25% w/w NFC content. ATDC5 cell viability and proliferation as well as chondrogenic differentiation are assessed using immunohistochemical staining for sulfated glycosaminoglycans and collagen type II. A possible application of AG‐N hydrogels as an osteochondral plug is also proposed, with polyetheretherketone as the subchondral bone anchor part. The mechanical properties of the resulting osteochondral device highlight its potential as a promising biomaterial for treatment of osteochondral defects. These findings provide valuable insights into the development of AG‐N hydrogels for load‐bearing tissue engineering applications.

Funder

Deutsche Forschungsgemeinschaft

Thailand Research Fund

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3