Investigating the Effect of Processing and Material Parameters of Alginate Dialdehyde-Gelatin (ADA-GEL)-Based Hydrogels on Stiffness by XGB Machine Learning Model

Author:

Ege Duygu12ORCID,Boccaccini Aldo R.1ORCID

Affiliation:

1. Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany

2. Institute of Biomedical Engineering, Bogazici University, Rasathane St., Kandilli, 34684 İstanbul, Turkey

Abstract

To address the limitations of alginate and gelatin as separate hydrogels, partially oxidized alginate, alginate dialdehyde (ADA), is usually combined with gelatin to prepare ADA-GEL hydrogels. These hydrogels offer tunable properties, controllable degradation, and suitable stiffness for 3D bioprinting and tissue engineering applications. Several processing variables affect the final properties of the hydrogel, including degree of oxidation, gelatin content and type of crosslinking agent. In addition, in 3D-printed structures, pore size and the possible addition of a filler to make a hydrogel composite also affect the final physical and biological properties. This study utilized datasets from 13 research papers, encompassing 33 unique combinations of ADA concentration, gelatin concentration, CaCl2 and microbial transglutaminase (mTG) concentrations (as crosslinkers), pore size, bioactive glass (BG) filler content, and one identified target property of the hydrogels, stiffness, utilizing the Extreme Boost (XGB) machine learning algorithm to create a predictive model for understanding the combined influence of these parameters on hydrogel stiffness. The stiffness of ADA-GEL hydrogels is notably affected by the ADA to GEL ratio, and higher gelatin content for different ADA gel concentrations weakens the scaffold, likely due to the presence of unbound gelatin. Pore size and the inclusion of a BG particulate filler also have a significant impact on stiffness; smaller pore sizes and higher BG content lead to increased stiffness. The optimization of ADA-GEL composition and the inclusion of BG fillers are key determinants to tailor the stiffness of these 3D printed hydrogels, as found by the analysis of the available data.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3