TWIST1 Silencing Enhances In Vitro and In Vivo Osteogenic Differentiation of Human Adipose-Derived Stem Cells by Triggering Activation of BMP-ERK/FGF Signaling and TAZ Upregulation

Author:

Quarto Natalina12,Senarath-Yapa Kshemendra1,Renda Andrea2,Longaker Michael T.1

Affiliation:

1. Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery Stanford University, School of Medicine, Stanford, California, USA

2. Dipartimento di Scienze Biomediche Avanzate Universita' degli Studi di Napoli Federico II, Napoli, Italy

Abstract

Abstract Mesenchymal stem cells (MSCs) show promise for cellular therapy and regenerative medicine. Human adipose tissue-derived stem cells (hASCs) represent an attractive source of seed cells in bone regeneration. How to effectively improve osteogenic differentiation of hASCs in the bone tissue engineering has become a very important question with profound translational implications. Numerous regulatory pathways dominate osteogenic differentiation of hASCs involving transcriptional factors and signaling molecules. However, how these factors combine with each other to regulate hASCs osteogenic differentiation still remains to be illustrated. The highly conserved developmental proteins TWIST play key roles for transcriptional regulation in mesenchymal cell lineages. This study investigates TWIST1 function in hASCs osteogenesis. Our results show that TWIST1 shRNA silencing increased the osteogenic potential of hASCs in vitro and their skeletal regenerative ability when applied in vivo. We demonstrate that the increased osteogenic capacity observed with TWIST1 knockdown in hASCs is mediated through endogenous activation of BMP and ERK/FGF signaling leading, in turn, to upregulation of TAZ, a transcriptional modulator of MSCs differentiation along the osteoblast lineage. Inhibition either of BMP or ERK/FGF signaling suppressed TAZ upregulation and the enhanced osteogenesis in shTWIST1 hASCs. Cosilencing of both TWIST1 and TAZ abrogated the effect elicited by TWIST1 knockdown thus, identifying TAZ as a downstream mediator through which TWIST1 knockdown enhanced osteogenic differentiation in hASCs. Our functional study contributes to a better knowledge of molecular mechanisms governing the osteogenic ability of hASCs, and highlights TWIST1 as a potential target to facilitate in vivo bone healing. Stem Cells  2015;33:833–847

Funder

NIH

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3