A Versatile Sulfur‐Assisted Pyrolysis Strategy for High‐Atom‐Economy Upcycling of Waste Plastics into High‐Value Carbon Materials

Author:

Tang Youchen12,Cen Zongheng2,Ma Qian3,Zheng Bingna1,Cai Zhaopeng1,Liu Shaohong2,Wu Dingcai2ORCID

Affiliation:

1. Department of Orthopedics The Eighth Affiliated Hospital Sun Yat‐sen University Shenzhen 518000 P. R. China

2. PCFM Lab School of Chemistry Sun Yat‐sen University Guangzhou 510006 P. R. China

3. Research Center of Medical Sciences Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou 510080 P. R. China

Abstract

AbstractWith the overconsumption of disposable plastics, there is a considerable emphasis on the recycling of waste plastics to relieve the environmental, economic, and health‐related consequences. Here, a sulfur‐assisted pyrolysis strategy is demonstrated for versatile upcycling of plastics into high‐value carbons with an ultrahigh carbon‐atom recovery (up to 85%). During the pyrolysis process, the inexpensive elemental sulfur molecules are covalently bonded with polymer chains, and then thermally stable intermediates are produced via dehydrogenation and crosslinking, thereby inhibiting the decomposition of plastics into volatile small hydrocarbons. In this manner, the carbon products obtained from real‐world waste plastics exhibit sulfur‐rich skeletons with an enlarged interlayer distance, and demonstrate superior sodium storage performance. It is believed that the present results offer a new solution to alleviate plastic pollution and reduce the carbon footprint of plastic industry.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3