Affiliation:
1. Department of Orthopedics The Eighth Affiliated Hospital Sun Yat‐sen University Shenzhen 518000 P. R. China
2. PCFM Lab School of Chemistry Sun Yat‐sen University Guangzhou 510006 P. R. China
3. Research Center of Medical Sciences Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou 510080 P. R. China
Abstract
AbstractWith the overconsumption of disposable plastics, there is a considerable emphasis on the recycling of waste plastics to relieve the environmental, economic, and health‐related consequences. Here, a sulfur‐assisted pyrolysis strategy is demonstrated for versatile upcycling of plastics into high‐value carbons with an ultrahigh carbon‐atom recovery (up to 85%). During the pyrolysis process, the inexpensive elemental sulfur molecules are covalently bonded with polymer chains, and then thermally stable intermediates are produced via dehydrogenation and crosslinking, thereby inhibiting the decomposition of plastics into volatile small hydrocarbons. In this manner, the carbon products obtained from real‐world waste plastics exhibit sulfur‐rich skeletons with an enlarged interlayer distance, and demonstrate superior sodium storage performance. It is believed that the present results offer a new solution to alleviate plastic pollution and reduce the carbon footprint of plastic industry.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献