Precise Construction of Cu‐Based Catalysts using Surface Molecular Modifiers for Electroreduction of CO2 to Multi‐Carbon Products

Author:

Zhang Tingting1,He Jing1,Xiang Xu12ORCID

Affiliation:

1. State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology 15 Beisanhuan Donglu Beijing 100029 P. R. China

2. Quzhou Institute for Innovation in Resource Chemical Engineering Quzhou Zhejiang Province 324000 (P. R. China

Abstract

AbstractConverting CO2 into valuable chemicals has been intensively explored in recent years. Benefited from the substantial cost reduction of renewable electricity, the electrochemical methods have been emerging as a potential means for CO2 capture and conversion. Recently, molecular tuning has been recognized as a powerful technique to modify catalyst's surface and verified effective in improving CO2RR performance. However, there are few comprehensive and insightful reviews on molecularly modified Cu‐based catalysts to precisely modulate the activity and selectivity of C2+ products in CO2 reduction. Herein, the development of CO2RR plausible reaction mechanisms is first introduced. The process and reaction pathways of the carbon‐carbon coupling are briefly discussed. Four main aspects of the molecular tuning strategy of the CO2RR are described as the first coordination layer, second coordination layer, outer layer, and confined effects. The understanding of the improved C2+ performance is demonstrated for molecularly modified Cu‐based catalysts. The challenges and perspectives in this field are addressed to further inspire the disclosure of the fundamental understanding in CO2RR, the system optimization, advanced in situ and operando techniques, and integration of CO2 capture and conversion technology with high activity and selectivity for durable applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3