Cardiovascular bioimaging of nitric oxide: Achievements, challenges, and the future

Author:

Vidanapathirana Achini K.1234ORCID,Psaltis Peter J.124ORCID,Bursill Christina A.124ORCID,Abell Andrew D.235ORCID,Nicholls Stephen J.26

Affiliation:

1. Vascular Research Centre, Lifelong Health Theme South Australian Health and Medical Research Institute (SAHMRI) Adelaide South Australia Australia

2. Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP) Adelaide Australia

3. Institute for Photonics and Advanced Sensing (IPAS) University of Adelaide Adelaide South Australia Australia

4. Adelaide Medical School University of Adelaide Adelaide South Australia Australia

5. Department of Chemistry University of Adelaide Adelaide South Australia Australia

6. Monash Cardiovascular Research Centre Monash University Clayton Victoria Australia

Abstract

AbstractNitric oxide (NO) is a ubiquitous, volatile, cellular signaling molecule that operates across a wide physiological concentration range (pM–µM) in different tissues. It is a highly diffusible messenger and intermediate in various metabolic pathways. NO plays a pivotal role in maintaining optimum cardiovascular function, particularly by regulating vascular tone and blood flow. This review highlights the need for accurate, real‐time bioimaging of NO in clinical diagnostic, therapeutic, monitoring, and theranostic applications within the cardiovascular system. We summarize electrochemical, optical, and nanoscale sensors that allow measurement and imaging of NO, both directly and indirectly via surrogate measurements. The physical properties of NO render it difficult to accurately measure in tissues using direct methods. There are also significant limitations associated with the NO metabolites used as surrogates to indirectly estimate NO levels. All these factors added to significant variability in the measurement of NO using available methodology have led to a lack of sensors and imaging techniques of clinical applicability in relevant vascular pathologies such as atherosclerosis and ischemic heart disease. Challenges in applying current methods to biomedical and clinical translational research, including the wide physiological range of NO and limitations due to the characteristics and toxicity of the sensors are discussed, as are potential targets and modifications for future studies. The development of biocompatible nanoscale sensors for use in combination with existing clinical imaging modalities provides a feasible opportunity for bioimaging NO within the cardiovascular system.

Funder

Australian Research Council

National Health and Medical Research Council

National Heart Foundation of Australia

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3