Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells

Author:

Kuchan M. J.1,Frangos J. A.1

Affiliation:

1. Department of Chemical Engineering, Pennsylvania State University,University Park 16802.

Abstract

These experiments demonstrate that exposure of cultured endothelial cells (EC) to well-defined laminar fluid flow results in an elevated rate of NO production. NO production was monitored by release of NOx (NO2- + NO3(2-) and by cellular guanosine 3',5'-cyclic monophosphate (cGMP) concentration. NO synthase (NOS) inhibitor blocked the flow-mediated stimulation of both NOx and cGMP, indicating that both measurements reflect NO production. Exposure to laminar flow increased NO release in a biphasic manner, with an initial rapid production consequent to the onset of flow followed by a less rapid, sustained production. A similar rapid increase in NO production resulted from an increase in flow above a preexisting level. The rapid initial production of NO was not dependent on shear stress within a physiological range (6-25 dyn/cm2) but may be dependent on the rate of change in shear stress. The sustained release of NO was dependent on physiological levels of shear stress. The calcium (Ca2+) or calmodulin (CaM) dependence of the initial and sustained production of NO was compared with bradykinin (BK)-mediated NO production. Both BK and the initial production were inhibited by Ca2+ and CaM antagonists. In contrast, the sustained shear stress-mediated NO production was not affected, despite the continued functional presence of the antagonists. Dexamethasone had no effect on either the initial or the sustained shear stress-mediated NO production. An inducible NOS does not, therefore, explain the apparent Ca2+/CaM independence of the sustained shear stress-mediated NO production.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 483 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3