Holocene geoecohydrological floodplain dynamics in NE Belgium: regional drivers of local change

Author:

Hoevers Renske1ORCID,Broothaerts Nils1ORCID,Verstraeten Gert1ORCID

Affiliation:

1. Division of Geography and Tourism, Department of Earth and Environmental Sciences KU Leuven Celestijnenlaan 200E, B‐3001 Heverlee Belgium

Abstract

ABSTRACTDuring the Late Holocene, the majority of lowland river systems in temperate Europe transformed from low‐energy multi‐channel rivers in strongly vegetated marshy floodplains to more open floodplains characterised by single‐channel meandering rivers with overbank deposits. While the general framework of this transformation in floodplain geomorphology, ecology and hydrology (i.e. geoecohydrology) is widely recognised many uncertainties remain as its timing varies significantly, both among different river catchments and within them. To unravel whether the observed differences in floodplain response can be attributed to differences in the timing and nature of the driving forces or to a difference in sensitivity towards them, we compare long‐term and large‐scale reconstructions of the geoecohydrological floodplain dynamics and of the (climatically and anthropogenically driven) land cover change for two contrasting regions: the central Belgian loess belt and the sandy Campine region. By using a combination of cluster analysis, ordination and Ellenberg indicator scores on a large multi‐proxy and multi‐site dataset, we revealed the major trends in the past geoecohydrological evolution of northeastern Belgian floodplains. These trends are probably determined by changes in floodplain wetness, which can in turn be linked to variations in upland forest cover. The Early and Late Holocene floodplain transformations appear synchronous with the respective increases and decreases in upland forest cover in the vicinity of the sites, largely determining the water availability in the river catchments and thereby their local geoecohydrological conditions. Initially, these evolutions were determined by climate, but during the Middle and especially Late Holocene anthropogenic influence became a far more important factor, causing the evolutions in the two studied regions to increasingly diverge. While marshy floodplains with forested margins can still be found in the sandy Campine region today, these have become rare in the central Belgian loess belt due to the combination of a higher level of human impact and greater erodibility of the soils in this area. Despite the strong spatiotemporal variability of the floodplain transformations, we observe a trend towards increasingly rapid floodplain responses to upland land cover changes over the course of the Holocene, probably related to the growing hillslope–floodplain connectivity. We conclude that the (dis)similarities in Holocene geoecohydrological floodplain change can be largely attributed to the (dis)similarities in (climatically or anthropogenically driven) land cover change in the uplands, although the differences in inherent sensitivity of the locations – linked to factors such as soil type and topography – further complicate the already non‐linear impact–response relationships.

Funder

KU Leuven

Fonds Wetenschappelijk Onderzoek

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3