Ordered Mesoporous High‐Entropy Intermetallics for Efficient Oxygen Reduction Electrocatalysis

Author:

Wang Yanzhi1,Zhang Xin‐Yu2,He Hangjuan1,Chen Jie‐Jie2,Liu Ben1ORCID

Affiliation:

1. Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China

2. CAS Key Laboratory of Urban Pollutant Conversion Department of Applied Chemistry University of Science and Technology of China Hefei 230026 China

Abstract

AbstractHigh‐entropy alloys (HEAs) have offered wide opportunities for materials discovery, property optimization, and application exploration. In spite of some encouraging progress, manipulating HEAs with functional morphology/mesostructure and controlled chemical orderliness remains a big challenge. In this manuscript, a powerful and general strategy to synthesizing libraries of mesoporous high‐entropy intermetallics (MHEIs) with controlled orderliness in both mesoscopic and atomic levels is reported for the first time. Final products feature an ordered polyhedral morphology and double‐gyroid mesostructure as well as long‐range L10 intermetallic phase and HEA composition, delivering multiple advantages for enhancing electrochemical performance in oxygen reduction reaction (ORR) and single rechargeable zinc–air battery. Specifically, MHEI‐PtPdFeCoNi affords remarkable ORR activity (0.63 A mg−1 for mass activity and 1.01 mA cm−2 for specific activity) and superior stability (≈87% activity retained for 50 000 cycles and chronoamperometry tests) compared with the MHEAs with disordered atomic arrangement and commercial Pt/C. The excellent performance comes from the optimized surface HEA multimetallization as well as ordered intermetallic and mesoporous structure that changes the chemisorption of O*/OH* intermediates and lowers the overall energy barrier of oxygen reduction.

Funder

Natural Science Foundation of Sichuan Province

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3