Controllable and Scaffold‐Free Formation of 3D Multicellular Architectures Using a Bipolar Electrode Array

Author:

Wu Yupan123ORCID,Zhang Haohao1,Yue Yuanbo1,Wang Shaoxi1,Meng Yingqi4

Affiliation:

1. School of Microelectronics Northwestern Polytechnical University Xi'an 710072 P. R. China

2. Research & Development Institute of Northwestern Polytechnical University in Shenzhen Shenzhen 518000 P. R. China

3. Yangtze River Delta Research Institute of NPU Taicang 215400 P. R. China

4. Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences Shanghai 201800 P. R. China

Abstract

AbstractThe natural environment of cells in vivo is a 3D network in which cellular responses are determined by influences from surrounding cells on all sides. This complex system is hard to be recapitulated in a conventional way. It is highly desirable to replace 2D models with 3D cell culture models. Microfluidic technology offers a variety of advantageous approaches for the long‐term 3D cell culture. Herein, a new cell patterning approach for generating cell clusters of specified size and shape by exploiting induced charge electroosmosis (ICEO) flow at a bipolar electrode array is exploited. Cell or particle clusters can be produced at the edges or centers of bipolar electrodes (BPEs) with controlled organization, by designing electrodes with arbitrary shapes. This platform is further extended to flexibly organize biological units with different properties via the ICEO or dielectrophoresis (DEP) based assembly. Heterotypic cell clusters can be produced at the bipolar electrode (BPE) by adjusting the applied frequencies and the sample injection sequence. This hybrid approach by integrating ICEO flow vortexes and DEP properties of the cells, allows the wireless generation of high‐throughput 3D clusters or spheroids with size adjustability and biocompatibility, which shows great potential in tissue engineering, drug discovery, and tumor research.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3