High‐Entropy Transition Metal Phosphorus Trichalcogenides for Rapid Sodium Ion Diffusion

Author:

Huang Song1,Qiu Zanlin2,Zhong Jiang3,Wu Shengqiang2,Han Xiaocang2,Hu Wenchao2,Han Ziyi4,Cheng Wing Ni2,Luo Yan2,Meng Yuan2,Hu Zuyang1,Zhou Xuan1,Guo Shaojun2,Zhu Jian3,Zhao Xiaoxu2ORCID,Li Cheng Chao1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Plant Resources Biorefinery School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China

2. School of Materials Science and Engineering Peking University Beijing 100871 China

3. State Key Laboratory for Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan Key Laboratory of Two‐Dimensional Materials Hunan University Changsha 410082 China

4. Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University Tianjin 300072 China

Abstract

AbstractHigh‐entropy strategies are regarded as a powerful means to enhance performance in energy storage fields. The improved properties are invariably ascribed to entropy stabilization or synergistic cocktail effect. Therefore, the manifested properties in such multicomponent materials are usually unpredictable. Elucidating the precise correlations between atomic structures and properties remains a challenge in high‐entropy materials (HEMs). Herein, atomic‐resolution scanning transmission electron microscopy annular dark field (STEM‐ADF) imaging and four dimensions (4D)‐STEM are combined to directly visualize atomic‐scale structural and electric information in high‐entropy FeMnNiVZnPS3. Aperiodic stacking is found in FeMnNiVZnPS3 accompanied by high‐density strain soliton boundaries (SSBs). Theoretical calculation suggests that the formation of such structures is attributed to the imbalanced stress of distinct metal‐sulfur bonds in FeMnNiVZnPS3. Interestingly, the electric field concentrates along the two sides of SSBs and gradually diminishes toward the two‐dimensional (2D) plane to generate a unique electric field gradient, strongly promoting the ion‐diffusion rate. Accordingly, high‐entropy FeMnNiVZnPS3 demonstrates superior ion‐diffusion coefficients of 10−9.7‐10−8.3 cm2 s−1 and high‐rate performance (311.5 mAh g−1 at 30 A g−1). This work provides an alternative way for the atomic‐scale understanding and design of sophisticated HEMs, paving the way for property engineering in multi‐component materials.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3