Avelumab first‐line maintenance in advanced urothelial carcinoma: Complete screening for prognostic and predictive factors using machine learning in the JAVELIN Bladder 100 phase 3 trial

Author:

Manitz Juliane1,Gerhold‐Ay Aslihan2,Kieslich Pascal2ORCID,Shah Parantu1,Mrowiec Thomas2,Tyroller Karin1

Affiliation:

1. EMD Serono Billerica Massachusetts USA

2. The healthcare business of Merck KGaA Darmstadt Germany

Abstract

AbstractBackgroundAvelumab first‐line (1 L) maintenance is a standard of care for advanced urothelial carcinoma (aUC) based on the JAVELIN Bladder 100 phase 3 trial, which showed that avelumab 1 L maintenance + best supportive care (BSC) significantly prolonged overall survival (OS) and progression‐free survival (PFS) vs BSC alone in patients who were progression free after receiving 1 L platinum‐containing chemotherapy. Here, we comprehensively screened JAVELIN Bladder 100 trial datasets to identify prognostic factors that define subpopulations of patients with longer or shorter OS irrespective of treatment, and predictive factors that select patients who could obtain a greater OS benefit from avelumab 1 L maintenance treatment.MethodsWe performed machine learning analyses to screen a large set of baseline covariates, including patient demographics, disease characteristics, laboratory values, molecular biomarkers, and patient‐reported outcomes. Covariates were identified from previously reported analyses and established prognostic and predictive markers. Variables selected from random survival forest models were processed further in univariate Cox models with treatment interaction and visually inspected using correlation analysis and Kaplan–Meier curves. Results were summarized in a multivariable Cox model.ResultsPrognostic baseline covariates associated with OS included in the final model were assignment to avelumab 1 L maintenance treatment, Eastern Cooperative Oncology Group performance status, site of metastasis, sum of longest target lesion diameters, levels of C‐reactive protein and alkaline phosphatase in blood, lymphocyte proportion in intratumoral stroma, tumor mutational burden, and tumor CD8+ T‐cell infiltration. Potential predictive factors included site of metastasis, tumor mutation burden, and tumor CD8+ T‐cell infiltration. An analysis in patients with PD‐L1+ tumors had similar findings to those in the overall population.ConclusionsMachine learning analyses of data from the JAVELIN Bladder 100 trial identified potential prognostic and predictive factors for avelumab 1 L maintenance treatment in patients with aUC, which warrant further evaluation in other clinical datasets.

Funder

Pfizer

Publisher

Wiley

Reference57 articles.

1. Epidemiology of bladder cancer;Saginala K;Med Sci (Basel),2020

2. National Cancer Institute.SEER Cancer Stat Facts: Bladder Cancer. Accessed February 27 2024.https://seer.cancer.gov/statfacts/html/urinb.html

3. American Cancer Society.What is bladder cancer?https://www.cancer.org/cancer/bladder‐cancer/about/what‐is‐bladder‐cancer

4. Durvalumab alone and durvalumab plus tremelimumab versus chemotherapy in previously untreated patients with unresectable, locally advanced or metastatic urothelial carcinoma (DANUBE): a randomised, open-label, multicentre, phase 3 trial

5. Pembrolizumab alone or combined with chemotherapy versus chemotherapy as first-line therapy for advanced urothelial carcinoma (KEYNOTE-361): a randomised, open-label, phase 3 trial

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3