Astrocyte Differentiation of Neural Precursor Cells is Enhanced by Retinoic Acid Through a Change in Epigenetic Modification

Author:

Asano Hirotsugu1,Aonuma Makoto1,Sanosaka Tsukasa1,Kohyama Jun1,Namihira Masakazu1,Nakashima Kinichi1

Affiliation:

1. Laboratory of Molecular Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan

Abstract

Abstract Neurons, astrocytes, and oligodendrocytes—the three major cell types that comprise the central nervous system—are generated from common multipotent neural precursor cells (NPCs). Members of the interleukin-6 family of cytokines, including leukemia inhibitory factor (LIF), induce astrocyte differentiation of NPCs by activating the transcription factor signal transducer and activator of transcription 3 (STAT3). We show here that retinoic acid (RA) facilitates LIF-induced astrocyte differentiation of NPCs. RA and LIF synergistically activate the promoter of gfap, which encodes the astrocytic marker glial fibrillary acidic protein, and a putative RA response element in the promoter was found to be critical for this activation. Histone H3 acetylation around the STAT-binding site in the gfap promoter was increased in NPCs treated with RA, allowing STAT3 to gain access to the promoter more efficiently. These results suggest that RA acts in concert with LIF to induce astrocyte differentiation of NPCs through an epigenetic mechanism that involves cross-talk between distinct signaling pathways. Disclosure of potential conflicts of interest is found at the end of this article.

Funder

Brain Science Foundation, a Grant-in-Aid for Young Scientists, a Grant-in-Aid for Scientific Research on Priority Areas–Molecular Brain Science

Nara Institute of Science and Technology (NAIST) Global Center of Excellence (COE) Program from the Ministry of Education, Culture, Sports, Science and Technology of Japan

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3