Radial stem astrocytes (aka neural stem cells): Identity, development, physio‐pathology, and therapeutic potential

Author:

Yeh Chia‐Yu1ORCID,Wu Kuan‐Yu2ORCID,Huang Guo‐Jen2ORCID,Verkhratsky Alexei3456ORCID

Affiliation:

1. Institute of Molecular Biology Academia Sinica Taipei 115 Taiwan

2. Graduate Institute of Biomedical Sciences, College of Medicine Chang Gung University Taoyuan 333 Taiwan

3. Faculty of Biology, Medicine and Health The University of Manchester Manchester M13 9PT UK

4. Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science Bilbao 48011 Spain

5. Department of Stem Cell Biology State Research Institute Centre for Innovative Medicine Vilnius LT‐01102 Lithuania

6. Department of Forensic Analytical Toxicology, School of Forensic Medicine China Medical University Shenyang China

Abstract

AbstractAdult neurogenesis is a striking example of neuroplasticity, which enables adaptive network remodelling in response to all forms of environmental stimulation in physiological and pathological contexts. Dysregulation or cessation of adult neurogenesis contributes to neuropathology negatively affecting brain functions and hampering regeneration of the nervous tissue while targeting adult neurogenesis may provide the basis for potential therapeutic interventions. Neural stem cells in the adult mammalian brain are at the core and the entry point of adult neurogenesis. By their origin and properties, these cells belong to astroglia, and are represented by stem radial astrocytes (RSA) which exhibit multipotent “stemness”. In the neurogenic niches, RSA interact with other cellular components, including protoplasmic astrocytes, which in turn regulate their neurogenic activity. In pathology, RSA become reactive, which affects their neurogenic capabilities, whereas reactive parenchymal astrocytes up‐regulate stem cell hallmarks and are able to generate progeny that remain within astrocyte lineage. What makes RSA special is their multipotency, represented by self‐renewing capacity capability to generate other cellular types as progeny. A broad understanding of the cellular features of RSA and parenchymal astrocytes provides an insight into the machinery that promotes/suppresses adult neurogenesis, clarifying principles of network remodelling. In this review, we discuss the cellular hallmarks, research tools, and models of RSA and astrocytes of the subventricular zone along the lateral ventricle and dentate gyrus of the hippocampus. We also discuss RSA in ageing, which has a great impact on the proliferative capacity of RSA, as well as the potential of RSA and astrocytes in therapeutic strategies aimed at cell replacement and regeneration.

Publisher

Wiley

Subject

Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3