Tandem Electro‐Thermo‐Catalysis for the Oxidative Aminocarbonylation of Arylboronic Acids to Amides from CO2 and Water

Author:

Mei Guoliang1,Lu Yanze1,Yang Xiaoju1,Chen Sanxia1,Yang Xuan1,Yang Li‐Ming1,Tang Conghui1,Sun Yujie2,Xia Bao Yu1ORCID,You Bo1

Affiliation:

1. Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 China

2. Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA

Abstract

AbstractDirect CO2 electroreduction to valuable chemicals is critical for carbon neutrality, while its main products are limited to simple C1/C2 compounds, and traditionally, the anodic O2 byproduct is not utilized. We herein report a tandem electrothermo‐catalytic system that fully utilizes both cathodic (i.e., CO) and anodic (i.e., O2) products during overall CO2 electrolysis to produce valuable organic amides from arylboronic acids and amines in a separate chemical reactor, following the Pd(II)‐catalyzed oxidative aminocarbonylation mechanism. Hexamethylenetetramine (HMT)‐incorporated silver and nickel hydroxide carbonate electrocatalysts were prepared for efficient coproduction of CO and O2 with Faradaic efficiencies of 99.3 % and 100 %, respectively. Systematic experiments, operando attenuated total reflection surface‐enhanced Fourier transform infrared spectroscopy characterizations and theoretical studies reveal that HMT promotes *CO2 hydrogenation/*CO desorption for accelerated CO2‐to‐CO conversion, and O2 inhibits reductive deactivation of the Pd(II) catalyst for enhanced oxidative aminocarbonylation, collectively leading to efficient synthesis of 10 organic amides with high yields of above 81 %. This work demonstrates the effectiveness of a tandem electrothermo‐catalytic strategy for economically attractive CO2 conversion and amide synthesis, representing a new avenue to explore the full potential of CO2 utilization.

Publisher

Wiley

Subject

General Chemistry,Catalysis

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3