On‐Chip Analytical Method for Investigating Protrusive Forces in Growing Plant Roots†

Author:

Li Jing1,Notaguchi Michitaka2,Kanno Isaku1,Hida Hirotaka1

Affiliation:

1. Graduate School of Engineering Kobe University 1‐1 Rokkodai‐cho, Nada‐ku Kobe Hyogo 657‐8501 Japan

2. Graduate School of Science Kyoto University 1Yoshidahonmachi, Sakyo‐ku Kyoto 606‐8317 Japan

Abstract

In this study, we present an on‐chip analytical method using a microfluidic device to characterize the mechanical properties in growing roots. Roots are essential organs for plants and grow under heterogeneous conditions in soil. Especially, the mechanical impedance in soil significantly affects root growth. Understanding the mechanical properties of roots and the physical interactions between roots and soil is important in plant science and agriculture. However, an effective method for directly evaluating the mechanical properties of growing roots has not been established. To overcome this technical issue, we developed a polydimethylsiloxane (PDMS) microfluidic device integrated with a cantilevered sensing pillar for measuring the protrusive force generated by the growing roots. Using the developed device, we analyzed the mechanical properties of the roots in a model plant, Arabidopsis thaliana. The root growth behavior and the mechanical interaction with the sensing pillar were recorded using a time‐lapse microscopy system. We successfully quantified the mechanical properties of growing roots including the protrusive force and apparent Young's modulus based on a simple physical model considering the root morphology. © 2025 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3