RUNX1‐dependent mechanisms in biological control and dysregulation in cancer

Author:

Hong Deli1,Fritz Andrew J.2ORCID,Gordon Jonathan A.2,Tye Coralee E.2,Boyd Joseph R.2,Tracy Kirsten M.2ORCID,Frietze Seth E.3,Carr Frances E.4,Nickerson Jeffrey A.5,Van Wijnen Andre J.6ORCID,Imbalzano Anthony N.7,Zaidi Sayyed K.2,Lian Jane B.2,Stein Janet L.2,Stein Gary S.2ORCID

Affiliation:

1. Department of Medical Oncology Dana Farber Cancer Institute Boston Massachusetts

2. Department of Biochemistry and University of Vermont Cancer Center University of Vermont Burlington Vermont

3. Department of Biomedical and Health Sciences University of Vermont Burlington Vermont

4. Department of Pharmacology University of Vermont Burlington Vermont

5. Department of Pediatrics UMass Medical School Worcester Massachusetts

6. Departments of Orthopedic Surgery and Biochemistry and Molecular Biology Mayo Clinic Rochester Minnesota

7. Graduate Program in Cell Biology and Department of Biochemistry and Molecular Pharmacology UMass Medical School Worcester Massachusetts

Abstract

AbstractThe RUNX1 transcription factor has recently been shown to be obligatory for normal development. RUNX1 controls the expression of genes essential for proper development in many cell lineages and tissues including blood, bone, cartilage, hair follicles, and mammary glands. Compromised RUNX1 regulation is associated with many cancers. In this review, we highlight evidence for RUNX1 control in both invertebrate and mammalian development and recent novel findings of perturbed RUNX1 control in breast cancer that has implications for other solid tumors. As RUNX1 is essential for definitive hematopoiesis, RUNX1 mutations in hematopoietic lineage cells have been implicated in the etiology of several leukemias. Studies of solid tumors have revealed a context‐dependent function for RUNX1 either as an oncogene or a tumor suppressor. These RUNX1 functions have been reported for breast, prostate, lung, and skin cancers that are related to cancer subtypes and different stages of tumor development. Growing evidence suggests that RUNX1 suppresses aggressiveness in most breast cancer subtypes particularly in the early stage of tumorigenesis. Several studies have identified RUNX1 suppression of the breast cancer epithelial‐to‐mesenchymal transition. Most recently, RUNX1 repression of cancer stem cells and tumorsphere formation was reported for breast cancer. It is anticipated that these new discoveries of the context‐dependent diversity of RUNX1 functions will lead to innovative therapeutic strategies for the intervention of cancer and other abnormalities of normal tissues.

Funder

Institut National Du Cancer

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3