Surface Functionalization of Iron Oxide Nanoparticles and their Stability in Different Media

Author:

Arndt Darius,Gesing Thorsten M.,Bäumer Marcus

Abstract

AbstractSize‐selective synthesis of very small iron oxide nanoparticles (IONP; 4–8 nm) was achieved by the thermal decomposition of iron acetylacetonate in diethylenglycol by a simple one‐pot reaction. The particles were functionalized on the one hand with poly(vinylpyrrolidone) (PVP) directly during the formation of the particles and on the other hand by a simple postsynthetic reaction with citrate, ascorbate, tartrate, dextran 60, gum Arabic, PVP, or poly(ethyleneglycol) (PEG). In view of medical and environmental applications, the stability of the particles was measured with dynamic light scattering in water as well as in physiological media containing buffers (4‐(2‐hydroxyethyl)‐1‐piperazineethanesulfonic acid (IP‐HEPES), phosphate buffered saline (PBS)), high salt concentrations (Elendt M7), or proteins (Dulbecco’s modified eagle medium (DMEM) with and without 10 % fetal calf serum (FCS)). The effect of the functionalization of the nanoparticles on the production of radical oxygen species (ROS) was investigated during the Fenton reaction, showing that the nature of the functionalization can raise the production of ROS drastically. To extend the range of applications, the one‐pot reaction with PVP was expanded by an additional step, allowing tagging of the particles with various fluorescein derivatives. In this way, fluorescent nanoparticles exhibiting emissions in the range of 475–553 nm were obtained.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3