Synthesis and Characterization of Coated CoFe2O4 Nanoparticles with Biocompatible Compounds and In Vitro Toxicity Assessment on Glioma Cell Lines

Author:

Ozer Sevil1ORCID,Dogan Nurcan23ORCID,Canim‐Ates Sezen1ORCID,Bingolbali Ayhan4ORCID

Affiliation:

1. Department of Biomedical Engineering Istanbul Yeniyuzyil University Istanbul 34010 Turkey

2. Department of Physics Gebze Technical University Kocaeli 41400 Turkey

3. Department of Physics Engineering Istanbul Technical University Istanbul 34469 Turkey

4. Department of Bioengineering Yıldız Technical University Istanbul 34220 Turkey

Abstract

AbstractRapid advances in the development of nanotechnology in recent years have led to functional magnetic nanoparticle types (MNPs) with different properties. The diverse applications of these nanoparticles make them a desirable candidate for use in biomedical areas due to their exclusive chemical and physical properties. The present work is conducted to study the in vitro biocompatibility of CoFe2O4@shell with different surface coatings (shell: ascorbic acid (AA), dextran (DEX), and polyethyleneimine (PEI). The cytotoxicity of coated nanoparticles is screened toward the glioma cancer line (C6) and fibroblast cell line (L929) using an MTT assay. CoFe2O4 NPs are synthesized using the co‐precipitation method together with hydrothermal synthesis and characterized regarding their structural and magnetic properties using state‐of‐the‐art techniques. Results showed the particles are consistent with the crystal structure of CoFe2O4 and the average crystallite size in the range of 16–18 nm. For the coated NPs, only a slight increase in the Hc is found except for the CoFe2O4@PEI NPs. The comparative analysis of the cytotoxic effects of CoFe2O4@shell NPs on L929 fibroblast and glioma cells shows that the cytotoxicity of samples is much more specific in brain tumor cells, especially it also indicates the significant efficacy of CoFe2O4@PEI in cancer cells.

Funder

Istanbul Teknik Üniversitesi

Yildiz Teknik Üniversitesi

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3