Bioactivity Assessment of Poly(ɛ-caprolactone)/Hydroxyapatite Electrospun Fibers for Bone Tissue Engineering Application

Author:

Hassan Mohd Izzat1ORCID,Sultana Naznin1,Hamdan Salehhuddin1

Affiliation:

1. Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia (UTM), Skudai, 81310 Johor Bahru, Johor, Malaysia

Abstract

Electrospinning is useful for fabricating nanofibrous structure with different composition and morphologies. It offers great advantages through its geometrical structure and biomimetic property, which can provide a suitable environmental site for cell growth. The fiber diameter is entangled by the concentration of PCL with some adjustment of parameters during electrospinning process. PCL with lower concentration had bead structure while higher concentration had smooth fiber. The incorporation of nanoparticle hydroxyapatite (nHA) into poly(ɛ-caprolactone) fiber was studied. The fiber diameter of PCL was increased with the addition of nHA. Composition of fiber at lower concentrations of PCL and nHA into the polymer produced fiber with a homogenous distribution of nHA in PCL fiber with less agglomeration. The immersion of PCL/nHA fiber in simulated body fluid (SBF) had bone-like apatite layer on its surface while PCL showed no results. PCL/nHA showed high water uptake and had improved wettability compared to PCL alone, suggesting that PCL/nHA fibers were more hydrophilic than PCL fiber.

Funder

Ministry of Higher Education, Malaysia

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3