An integrative approach for the design of bioactive polycaprolactone‐based scaffold for bone tissue engineering

Author:

Zusmanovitch Itay1,Asbi Thabet2,Regev Oshrat13,Zigdon Giladi Hadar2ORCID,Bianco‐Peled Havazelet1ORCID

Affiliation:

1. Department of Chemical Engineering Technion—Israel Institute of Technology Haifa Israel

2. Department of Periodontology Rambam Health Care Campus Haifa Israel

3. The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology Technion—Israel Institute of Technology Haifa Israel

Abstract

AbstractTreatment of large bone defects is challenging and requires coordination between cells, cytokines, and mechanical demands. Scaffold for bone tissue engineering should provide mechanical properties and allow cells adherence, proliferation, and osteodifferentiation. The current study aims to create an improved scaffold for bone tissue engineering, which is tailored to meet crucial scaffold requirements for a successive transplant. To achieve this goal, we adopted an integrative approach that considers simultaneously all essential design criteria, including high porosity, a wide range of pore sizes, a hydrophilic and rough surface, and biofunctionalization, for better bioactivity. We choose polycaprolactone (PCL) because of its mechanical stiffness and combined several methodologies to improve PCL bioactivity. The scaffolds were thoroughly characterized and tested in vitro with two cell lines and in vivo, demonstrating enhanced cell adhesion and proliferation onto and inside the scaffold. We demonstrate that our integrative approach has led to high hydrophilicity, high porosity with interconnected pores, stiffness, and improved bioactivity compared with the other studied scaffolds. These new scaffolds serve as a promising platform for bone engineering.

Funder

Ministry of Science, Technology and Space

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Materials Chemistry,Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3