TGF-β3 Induces Autophagic Activity by Increasing ROS Generation in a NOX4-Dependent Pathway

Author:

Zhang Yun12,Tang Hong-Mei1,Liu Chun-Feng2,Yuan Xie-Fang1,Wang Xiao-Yun1,Ma Ning1,Xu Guo-Feng1,Wang Song-Ping2ORCID,Deng Jun2ORCID,Wang Xing1ORCID

Affiliation:

1. Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan, China

2. First Department of Respiratory Disease, Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan, China

Abstract

Higher concentrations of reactive oxygen species (ROS) have been associated with epithelial cell damage, cell shedding, and airway hyperresponsiveness. Previous studies have indicated that transforming growth factor-beta (TGF-β) mediates ROS production and NADPH oxidase (NOX) activity. In our previous study, we also observed that TGF-β3 increases mucus secretion in airway epithelial cells in an autophagy-dependent fashion. Although it is well known that the relationship between ROS and autophagy is cell context-dependent, the exact mechanism of action remains unclear. The following study examined whether ROS act as upstream of autophagy activation in response to TGF-β3 induction. Using an allergic inflammation mouse model induced by house dust mite (HDM), we observed elevated lung amounts of TGF-β3 accompanied by increased ROS levels. And we found that ROS levels were elevated and NOX4 expression was increased in TGF-β3-induced epithelial cells, while the lack of NOX4 in the epithelial cells could reduce ROS generation and autophagy-dependent MUC5AC expression treated with TGF-β3. Furthermore, our studies demonstrated that the Smad2/3 pathway was involved in TGF-β3-induced ROS generation by promoting NOX4 expression. The inhibition of ROS generation by N-Acetyl-L-cysteine (NAC) resulted in a decrease in mucus expression and autophagy activity in vivo as well as in vitro. Finally, TGF-β3-neutralizing antibody significantly reduced the ROS generation, mucus expression, and autophagy activity and also decreased the phosphorylation of Smad2 and Smad3. Taken together, the obtained results revealed that persistent TGF-β3 activation increased ROS levels in a NOX4-dependent pathway and subsequently induced autophagy as well as MUC5AC expression in the epithelial cells.

Funder

Health and Family Planning Commission of Sichuan Province

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3