Kaempferol inhibits airway inflammation induced by allergic asthma through NOX4-Mediated autophagy

Author:

Xu Jianfeng1,Yu Zhenyu2,Li Wei1ORCID

Affiliation:

1. Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai, China

2. Department of Anesthesiology, Yantai Yuhuangding Hospital, Yantai, China

Abstract

Background Kaempferol has important medicinal value in the treatment of asthma. However, its mechanism of action has not been fully understood and needs to be explored and studied. Methods A binding activity of kaempferol with nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) was analyzed by molecular docking. Human bronchial epithelial cells (BEAS-2B) were treated with different concentrations (0, 1, 5, 10, 20, 40 μg/mL) of kaempferol to select its suitable concentration. In the transforming growth factor (TGF)-β1-induced BEAS-2B, cells were treated with 20 μg/mL kaempferol or 20 μM GLX35132 (a NOX4 inhibitor) to analyze its effects on NOX4-mediated autophagy. In the ovalbumin (OVA)-induced mice, 20 mg/kg kaempferol or 3.8 mg/kg GLX351322 administration was performed to analyze the therapeutic effects of kaempferol on NOX4-mediated autophagy. An autophagy activator, rapamycin, was used to confirm the mechanism of kaempferol in treatment of allergic asthma. Results A good binding of kaempferol to NOX4 (score = −9.2 kcal/mol) was found. In the TGF-β1-induced BEAS-2B, the NOX4 expression was decreased with kaempferol dose increase. The secretions of IL-25 and IL-33, and the NOX4-mediated autophagy were significantly decreased by kaempferol treatment in the TGF-β1-induced BEAS-2B. In the OVA-challenged mice, kaempferol treatment improved airway inflammation and remodeling through suppressing NOX4-mediated autophagy. The rapamycin treatment clearly hampered the therapeutic effects of kaempferol in the TGF-β1-induced cells and OVA-induced mice. Conclusions This study identifies kaempferol binds NOX4 to perform its functions in the treatment of allergic asthma, providing an effective therapeutic strategy in the further treatment of asthma.

Funder

the Project of Yantai Science and Technology

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3