Lipoxin A4 Ameliorates Acute Pancreatitis-Associated Acute Lung Injury through the Antioxidative and Anti-Inflammatory Effects of the Nrf2 Pathway

Author:

Ye Wen1ORCID,Zheng Chenlei1,Yu Dinglai2ORCID,Zhang Fan1,Pan Reguang1,Ni Xiaofeng1,Shi Zhehao1,Zhang Zhongjing1,Xiang Yukai2ORCID,Sun Hongwei2ORCID,Shi Keqing1,Chen Bicheng12ORCID,Zhang Qiyu2ORCID,Zhou Mengtao123ORCID

Affiliation:

1. Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015 Zhejiang Province, China

2. Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015 Zhejiang Province, China

3. The Pancreatitis Treatment Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015 Zhejiang Province, China

Abstract

Acute lung injury (ALI) is a critical event involved in the pathophysiological process of acute pancreatitis (AP). Many methods have been widely used for the treatment of AP-ALI, but few are useful during early inflammation. Lipoxin A4 (LXA4), a potent available anti-inflammatory and novel antioxidant mediator, has been extensively studied in AP-ALI, but its underlying mechanism as a protective mediator is not clear. This research was conducted to identify the possible targets and mechanisms involved in the anti-AP-ALI effect of LXA4. First, we confirmed that LXA4 strongly inhibited AP-ALI in mice. Next, using ELISA, PCR, and fluorescence detection to evaluate different parameters, LXA4 was shown to reduce the inflammatory cytokine production induced by AP and block reactive oxygen species (ROS) generation in vivo and in vitro. In addition, TNF-α treatment activated the nuclear factor E2-related factor 2 (Nrf2) signaling pathway and its downstream gene heme oxygenase-1 (HO-1) in human pulmonary microvascular endothelial cells (HPMECs), and LXA4 further promoted their expression. This study also provided evidence that LXA4 phosphorylates Ser40 and triggers its nuclear translocation to activate Nrf2. Moreover, when Nrf2-knockout (Nrf2-/-) mice and cells were used to further assess the effect of the Nrf2/HO-1 pathway, we found that Nrf2 expression knockdown partially eliminated the effect of LXA4 on the reductions in inflammatory factor levels while abrogating the inhibitory effect of LXA4 on the ROS generation stimulated by AP-ALI. Overall, LXA4 attenuated the resolution of AP-induced inflammation and ROS generation to mitigate ALI, perhaps by modulating the Nrf2/HO-1 pathway. These findings have laid a foundation for the treatment of AP-ALI.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3