Potential Mechanisms of White Peony against Primary Sjögren’s Syndrome Based on Network Pharmacology and Molecular Docking

Author:

Zhuang Shuqi1ORCID,Pu Jincheng1ORCID,Liang Yuanyuan1ORCID,Wu Zhenzhen1ORCID,Gao Ronglin1ORCID,Pan Shengnan1ORCID,Song Jiamin1ORCID,Tang Jianping1ORCID,Wang Xuan1ORCID

Affiliation:

1. Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 20065, China

Abstract

Background. Multiple system and organ damage occurs with the continuous progression of primary Sjögren’s syndrome (pSS), and the lack of specific drugs against this disease is a huge challenge. White peony (WP), a widely used traditional Chinese herb, has been confirmed to have a therapeutic value in pSS. However, the specific mechanisms of WP in the treatment of pSS are unknown. Methods. The active ingredients and their targets in WP were searched on the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and disease-related targets were collected from GeneCards, Online Mendelian Inheritance in Man (OMIM), and the Therapeutic Target Database (TTD). The overlapping targets were acquired by taking the intersection. A protein-protein interaction (PPI) network was structured using the STRING database. A disease-drug-ingredient-target (D-D-I-T) network was built using Cytoscape software. By filtering twice, core targets were acquired. Gene Ontology (GO) and Kyoto Encyclopedia Gene and Genome (KEGG) pathway enrichment analysis were accompanied by R packages. Finally, molecular docking was used to verify the abovementioned results. Results. In total, we screened 88 WP-related targets, 1480 pSS-related targets, and 32 overlapping targets. D-D-I-T Network analysis displayed six main active ingredients of WP, which played a significant therapeutic role in pSS. Further topological analysis selected seven core target genes, including IL-6, TNF, PPARγ, AKT1, CASP3, NOS3, and JUN. GO and KEGG analysis were used to elucidate pharmacological mechanisms, mainly acting in the AGE-RAGE signaling pathway. Molecular docking proved that paeoniflorin bound well with core targets. Conclusion. Our study revealed that IL-6, TNF, AKT1, CASP3, NOS3, and JUN may be pathogenic target genes, and PPARγ may be a protective target gene. The main active ingredients of WP mainly played a therapeutic role via the AGE-RAGE signaling pathway. These findings provide a fundamental and theoretical basis for the clinical application of WP.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3