Affiliation:
1. Ben-Gurion University of the Negev
Abstract
In recent years, machine learning algorithms, and more specifically deep learning algorithms, have been widely used in many fields, including cyber security. However, machine learning systems are vulnerable to adversarial attacks, and this limits the application of machine learning, especially in non-stationary, adversarial environments, such as the cyber security domain, where actual adversaries (e.g., malware developers) exist. This article comprehensively summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques and illuminates the risks they pose. First, the adversarial attack methods are characterized based on their stage of occurrence, and the attacker’ s goals and capabilities. Then, we categorize the applications of adversarial attack and defense methods in the cyber security domain. Finally, we highlight some characteristics identified in recent research and discuss the impact of recent advancements in other adversarial learning domains on future research directions in the cyber security domain. To the best of our knowledge, this work is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain, map them in a unified taxonomy, and use the taxonomy to highlight future research directions.
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Theoretical Computer Science
Cited by
133 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献