1. Deep Learning with Differential Privacy
2. Samson Abramsky and Achim Jung . 1994. Domain theory . In Handbook of Logic in Computer Science (Vol. 3), Samson Abramsky, Dov M . Gabbay, and T. S. E. Maibaum (Eds.). Oxford University Press, Inc. , 1–168. Samson Abramsky and Achim Jung. 1994. Domain theory. In Handbook of Logic in Computer Science (Vol. 3), Samson Abramsky, Dov M. Gabbay, and T. S. E. Maibaum (Eds.). Oxford University Press, Inc., 1–168.
3. Akshay Agrawal , Akshay Naresh Modi , Alexandre Passos, Allen Lavoie, Ashish Agarwal, Asim Shankar, Igor Ganichev, Josh Levenberg, Mingsheng Hong, Rajat Monga, et al. 2019 . TensorFlow Eager: A multi-stage, Python-embedded DSL for machine learning. arXiv preprint arXiv:1903.01855 (2019). Akshay Agrawal, Akshay Naresh Modi, Alexandre Passos, Allen Lavoie, Ashish Agarwal, Asim Shankar, Igor Ganichev, Josh Levenberg, Mingsheng Hong, Rajat Monga, et al. 2019. TensorFlow Eager: A multi-stage, Python-embedded DSL for machine learning. arXiv preprint arXiv:1903.01855 (2019).
4. Shun-ichi Amari. 1996. Neural learning in structured parameter spaces — natural Riemannian gradient . In Advances in Neural Information Processing Systems 9, NIPS , M. Mozer, M. I. Jordan, and T. Petsche (Eds.). MIT Press , 127–133. Shun-ichi Amari. 1996. Neural learning in structured parameter spaces — natural Riemannian gradient. In Advances in Neural Information Processing Systems 9, NIPS, M. Mozer, M. I. Jordan, and T. Petsche (Eds.). MIT Press, 127–133.
5. Automatic differentiation in machine learning: a survey;Baydin Atilim Günes;Journal of Machine Learning Research,2018