A simple differentiable programming language

Author:

Abadi Martín1,Plotkin Gordon D.1

Affiliation:

1. Google Research, USA

Abstract

Automatic differentiation plays a prominent role in scientific computing and in modern machine learning, often in the context of powerful programming systems. The relation of the various embodiments of automatic differentiation to the mathematical notion of derivative is not always entirely clear---discrepancies can arise, sometimes inadvertently. In order to study automatic differentiation in such programming contexts, we define a small but expressive programming language that includes a construct for reverse-mode differentiation. We give operational and denotational semantics for this language. The operational semantics employs popular implementation techniques, while the denotational semantics employs notions of differentiation familiar from real analysis. We establish that these semantics coincide.

Publisher

Association for Computing Machinery (ACM)

Reference45 articles.

1. Deep Learning with Differential Privacy

2. Samson Abramsky and Achim Jung . 1994. Domain theory . In Handbook of Logic in Computer Science (Vol. 3), Samson Abramsky, Dov M . Gabbay, and T. S. E. Maibaum (Eds.). Oxford University Press, Inc. , 1–168. Samson Abramsky and Achim Jung. 1994. Domain theory. In Handbook of Logic in Computer Science (Vol. 3), Samson Abramsky, Dov M. Gabbay, and T. S. E. Maibaum (Eds.). Oxford University Press, Inc., 1–168.

3. Akshay Agrawal , Akshay Naresh Modi , Alexandre Passos, Allen Lavoie, Ashish Agarwal, Asim Shankar, Igor Ganichev, Josh Levenberg, Mingsheng Hong, Rajat Monga, et al. 2019 . TensorFlow Eager: A multi-stage, Python-embedded DSL for machine learning. arXiv preprint arXiv:1903.01855 (2019). Akshay Agrawal, Akshay Naresh Modi, Alexandre Passos, Allen Lavoie, Ashish Agarwal, Asim Shankar, Igor Ganichev, Josh Levenberg, Mingsheng Hong, Rajat Monga, et al. 2019. TensorFlow Eager: A multi-stage, Python-embedded DSL for machine learning. arXiv preprint arXiv:1903.01855 (2019).

4. Shun-ichi Amari. 1996. Neural learning in structured parameter spaces — natural Riemannian gradient . In Advances in Neural Information Processing Systems 9, NIPS , M. Mozer, M. I. Jordan, and T. Petsche (Eds.). MIT Press , 127–133. Shun-ichi Amari. 1996. Neural learning in structured parameter spaces — natural Riemannian gradient. In Advances in Neural Information Processing Systems 9, NIPS, M. Mozer, M. I. Jordan, and T. Petsche (Eds.). MIT Press, 127–133.

5. Automatic differentiation in machine learning: a survey;Baydin Atilim Günes;Journal of Machine Learning Research,2018

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Handling the Selection Monad;Proceedings of the ACM on Programming Languages;2025-06-10

2. Distributed Strategies—Past and Future;ACM SIGLOG News;2025-04

3. Scimitar: Functional Programs as Optimization Problems;Proceedings of the 2024 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software;2024-10-17

4. Automatic differentiation for ML-family languages: Correctness via logical relations;Mathematical Structures in Computer Science;2024-09

5. δ is for Dialectica;Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science;2024-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3