Automatic differentiation for ML-family languages: Correctness via logical relations

Author:

Lucatelli Nunes FernandoORCID,Vákár MatthijsORCID

Abstract

AbstractWe give a simple, direct, and reusable logical relations technique for languages with term and type recursion and partially defined differentiable functions. We demonstrate it by working out the case of automatic differentiation (AD) correctness: namely, we present a correctness proof of a dual numbers style AD code transformation for realistic functional languages in the ML-family. We also show how this code transformation provides us with correct forward- and reverse-mode AD.The starting point is to interpret a functional programming language as a suitable freely generated categorical structure. In this setting, by the universal property of the syntactic categorical structure, the dual numbers AD code transformation and the basic $\boldsymbol{\omega } \mathbf{Cpo}$ -semantics arise as structure preserving functors. The proof follows, then, by a novel logical relations argument.The key to much of our contribution is a powerful monadic logical relations technique for term recursion and recursive types. It provides us with a semantic correctness proof based on a simple approach for denotational semantics, making use only of the very basic concrete model of $\omega$ -cpos.

Publisher

Cambridge University Press (CUP)

Reference62 articles.

1. Carpenter, B. , Hoffman, M. , Brubaker, M. , Lee, D. , Li, P. and Betancourt, M. (2015). The stan math library: reverse-mode automatic differentiation in C++. arXiv preprint arXiv: 1509.07164.

2. The formal theory of monads

3. Vákár, M. (2020). Denotational correctness of forward-mode automatic differentiation for iteration and recursion. arXiv preprint arXiv: 2007.05282.

4. Kerjean, M. and Pédrot, P.-M. (2022). ∂ is for Dialectica. working paper or preprint.

5. Computational lambda-calculus and monads

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3