Recent Advances in Natural Language Processing via Large Pre-trained Language Models: A Survey

Author:

Min Bonan1ORCID,Ross Hayley2ORCID,Sulem Elior3ORCID,Veyseh Amir Pouran Ben4ORCID,Nguyen Thien Huu4ORCID,Sainz Oscar5ORCID,Agirre Eneko5ORCID,Heintz Ilana6ORCID,Roth Dan3ORCID

Affiliation:

1. Amazon AWS AI Labs, USA

2. Harvard University, USA

3. University of Pennsylvania, USA

4. University of Oregon, USA

5. University of the Basque Country (UPV/EHU), Spain

6. Synoptic Engineering, USA

Abstract

Large, pre-trained language models (PLMs) such as BERT and GPT have drastically changed the Natural Language Processing (NLP) field. For numerous NLP tasks, approaches leveraging PLMs have achieved state-of-the-art performance. The key idea is to learn a generic, latent representation of language from a generic task once, then share it across disparate NLP tasks. Language modeling serves as the generic task, one with abundant self-supervised text available for extensive training. This article presents the key fundamental concepts of PLM architectures and a comprehensive view of the shift to PLM-driven NLP techniques. It surveys work applying the pre-training then fine-tuning, prompting, and text generation approaches. In addition, it discusses PLM limitations and suggested directions for future research.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference227 articles.

1. Omri Abend and Ari Rappoport. 2013. Universal Conceptual Cognitive Annotation (UCCA). In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).

2. Zeyuan Allen-Zhu and Yuanzhi Li. 2021. Towards understanding ensemble knowledge distillation and self-distillation in deep learning. https://arxiv.org/abs/2012.09816

3. Asaf Amrami and Yoav Goldberg. 2019. Towards better substitution-based word sense induction. https://arxiv.org/abs/1905.12598

4. Mikel Artetxe Jingfei Du Naman Goyal Luke Zettlemoyer and Ves Stoyanov. 2022. On the Role of Bidirectionality in Language Model Pre-Training. https://arxiv.org/abs/2205.11726

5. Ben Athiwaratkun, Cicero Nogueira dos Santos, Jason Krone, and Bing Xiang. 2020. Augmented natural language for generative sequence labeling. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP’20).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3