Recent Advances in Natural Language Processing via Large Pre-trained Language Models: A Survey
Author:
Affiliation:
1. Amazon AWS AI Labs, USA
2. Harvard University, USA
3. University of Pennsylvania, USA
4. University of Oregon, USA
5. University of the Basque Country (UPV/EHU), Spain
6. Synoptic Engineering, USA
Abstract
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Theoretical Computer Science
Link
https://dl.acm.org/doi/pdf/10.1145/3605943
Reference227 articles.
1. Omri Abend and Ari Rappoport. 2013. Universal Conceptual Cognitive Annotation (UCCA). In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
2. Zeyuan Allen-Zhu and Yuanzhi Li. 2021. Towards understanding ensemble knowledge distillation and self-distillation in deep learning. https://arxiv.org/abs/2012.09816
3. Asaf Amrami and Yoav Goldberg. 2019. Towards better substitution-based word sense induction. https://arxiv.org/abs/1905.12598
4. Mikel Artetxe Jingfei Du Naman Goyal Luke Zettlemoyer and Ves Stoyanov. 2022. On the Role of Bidirectionality in Language Model Pre-Training. https://arxiv.org/abs/2205.11726
5. Ben Athiwaratkun, Cicero Nogueira dos Santos, Jason Krone, and Bing Xiang. 2020. Augmented natural language for generative sequence labeling. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP’20).
Cited by 210 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advancing multimodal diagnostics: Integrating industrial textual data and domain knowledge with large language models;Expert Systems with Applications;2024-12
2. Synergizing machine learning & symbolic methods: A survey on hybrid approaches to natural language processing;Expert Systems with Applications;2024-10
3. Novel approaches for fake news detection based on attention-based deep multiple-instance learning using contextualized neural language models;Neurocomputing;2024-10
4. RNSC: A hierarchical deep learning model for net promoter scoring understanding by combining review and note through semantic consistency;Knowledge-Based Systems;2024-10
5. When large language model meets optimization;Swarm and Evolutionary Computation;2024-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3