Neural Networks in Forensic Expertology and Expert Practice: Problems and Prospects

Author:

Rossinskaya E. R.1

Affiliation:

1. Kutafin Moscow State Law University (MSAL)

Abstract

The article, from the perspective of the theory the forensic activity digitalization as a particular theory of forensic expertise, examines the prospects for the introduction of neural networks in forensic examination and the current problems arising in this case. The author notes changes in the methodology and technologies for developing expert techniques in connection with the introduction of artificial intelligence algorithms — neural networks. The areas neural networks’ application for solving various problems of science and practical activity are outlined. Specific examples demonstrate the possibilities of using supervised learning algorithms for neural networks in forensic practice. A detailed analysis of the reasons why the use of neural networks in forensic science can lead to erroneous conclusions is given. Particular attention is paid to hallucinations of deep learning neural networks on large language models. There is a danger that an expert, relying entirely on a neural network, may give the wrong conclusion, since self-learning generative neural networks do not provide an explanation for why they made a particular decision. To develop expert methods for solving typical expert problems based on neural networks, it is proposed to create databases (Dataset) for various forensic objects for analysis and machine learning. To store the Dataset, it is necessary to organize repositories that can contain data sets on types (kinds) of forensic examinations. Dataset and repositories will provide data quality control and model verification. The article substantiates the need for new competencies of a Data Scientist — a specialist who develops tools for solving forensic problems when introducing neural networks and other artificial intelligence algorithms into forensic science, as well as a machine learning engineer working in contact with him.

Publisher

Kutafin Moscow State Law University

Reference18 articles.

1. Aver'yanova T. V. Sudebnaya ekspertiza : kurs obshchei teorii. — M. : Norma, 2006. — 480 s.

2. Bakhteev D. V. Osobennosti raspoznavaniya podloga podpisi chelovekom kak pervichnye kriterii dlya razrabotki sistemy iskusstvennogo intellekta // Sibirskoe yuridicheskoe obozrenie. — 2020. — № 17 (4). — S. 514—522.

3. Bakhtizin A. R. , Bragin A. V. , Makarov V. L. Bol'shie yazykovye modeli chetvertogo pokoleniya kak novyi instrument v nauchnoi rabote // Iskusstvennye obshchestva. — 2023. — T. 18. — Vyp. 1. — URL: https://artsoc.jes.su/s207751800025046-9-1 (data obrashcheniya: 02.01.2024).

4. Rossinskaya E. R. Kontseptsiya chastnoi teorii tsifrovizatsii sudebno-ekspertnoi deyatel'nosti // Vestnik ekonomicheskoi bezopasnosti. — 2022. — № 5. — S. 173—176.

5. Rossinskaya E. R., Galyashina E. I., Zinin A. M. Teoriya sudebnoi ekspertizy (Sudebnaya ekspertologiya) : uchebnik / pod red. E. R. Rossinskoi. — M. : Norma ; Infra-M, 2020. — 268 s.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3