Features of Signature Verification By a Person as a Primary Criteria for Developing an Artificial Intelligence System

Author:

Bakhteev D. V.1

Affiliation:

1. Ural State Law University

Abstract

The modern capabilities of computers have returned interest in artificial intelligence technologies. A particular area of application of these technologies is pattern recognition, which can be applied to the traditional forensic task – identification of signs of forgery (imitation) of a signature. The results of forgery are differentiated into three types: auto-forgery, simple and skilled forgeries. Only skilled forgeries are considered in this study. The online and offline approaches to the study of signatures and other handwriting material are described. The developed artificial intelligence system based on an artificial neural network refers to the offline type of signature recognition – that is, it is focused on working exclusively with the consequences of the signature – its graphic image. The content and principles of the formation of a hypothesis for the development of an artificial intelligence system are described with a combination of humanitarian (legal) knowledge and natural-technical knowledge. At the initial stage of the study, in order to develop an experimental-applied artificial intelligence system based on an artificial neural network focused on identifying forged signatures, 127 people were questioned in order to identify a person's ability to detect fake signatures. It was found that under experimental conditions the probability of a correct determination of the originality or forgery of the presented signature for the respondent is on average 69.29 %. Accordingly, this value can be used as a threshold for determining the effectiveness of the developed artificial intelligence system. In the process of preparing the dataset (an array for training and verification of its results) of the system in terms of fraudulent signatures, some forensically significant features were revealed, associated with the psychological and anatomical features of the person performing the forgery, both known to criminalistics and new ones. It is emphasized that the joint development of artificial intelligence systems by the methods of computer science and criminalistics can generate additional results that may be useful outside the scope of the research tasks.

Publisher

Siberian Law University

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3