Increased clonal growth in heavily harvested ecosystems failed to rescue ayahuasca lianas from decline in the Peruvian Amazon rainforest

Author:

Coe Michael A.1ORCID,Gaoue Orou G.234ORCID

Affiliation:

1. Department of Botany University of Hawai‘i at Mānoa Honolulu Hawaii USA

2. Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee USA

3. Faculty of Agronomy University of Parakou Parakou Benin

4. Department of Geography, Environmental Management and Energy Studies University of Johannesburg Johannesburg South Africa

Abstract

Abstract Increasing harvest and overexploitation of wild plants for non‐timber forest products can significantly affect population dynamics of harvested populations. While the most common approach to assess the effect of harvest and perturbation of vital rates is focused on the long‐term population growth rate, most management strategies are planned and implemented over the short‐term. We developed an integral projection model to investigate the effects of harvest on the demography and the short‐ and long‐term population dynamics of Banisteriopsis caapi in the Peruvian Amazon rainforest. Harvest had no significant effect on the size‐dependent growth of lianas, but survival rates increased with size. Harvest had a significant negative effect on size‐dependent survival where larger lianas experienced greater mortality rates under high harvest pressure than smaller lianas. In the populations under high harvest pressure, survival of smaller lianas was greater than that of populations with low harvest pressure. Harvest had no significant effect on clonal or sexual reproduction, but fertility was size‐dependent. The long‐term population growth rates of B. caapi populations under high harvest pressure were projected to decline at a rate of 1.3% whereas populations with low harvest pressure are expected to increase at 3.2%. However, before reaching equilibrium, over the short‐term, all B. caapi populations were in decline by 26% (high harvested population) and (low harvested population) 20.4% per year. Elasticity patterns were dominated by survival of larger lianas irrespective of harvest treatments. Life table response experiment analyses indicated that high harvest caused the 6% reduction in population growth rates by significantly reducing the survival of large lianas and increasing the survival‐growth of smaller lianas including vegetative reproductive individuals. Synthesis and applications. This study emphasizes how important it is for management strategies for B. caapi lianas experiencing anthropogenic harvest to prioritize the survival of larger size lianas and vegetative reproducing individuals, particularly in increased harvested systems often prone to multiple stressors. From an applied conservation perspective, our findings illustrate the importance of both prospective and retrospective perturbation analyses in population growth rates in understanding the population dynamics of lianas in general in response to human‐induced disturbance.

Funder

Missouri Botanical Garden

National Science Foundation

Publisher

Wiley

Subject

Ecology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3