Small‐scale fires interact with herbivore feedbacks to create persistent grazing lawn environments

Author:

Singh Jenia1ORCID,Donaldson Jason E.2,Archibald Sally3ORCID,Parr Catherine L.345,Voysey Michael D.1,Davies Andrew B.1

Affiliation:

1. Department of Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts USA

2. Odum School of Ecology University of Georgia Athens Georgia USA

3. School of Animal Plant and Environmental Sciences University of the Witwatersrand Braamfontein, Johannesburg South Africa

4. Department of Earth, Ocean and Ecological Sciences University of Liverpool Liverpool UK

5. Department of Zoology & Entomology University of Pretoria Pretoria South Africa

Abstract

Abstract Fire‐herbivory feedbacks strongly influence the formation of grazing lawns in savanna ecosystems. Preliminary findings suggest that small‐scale (<25 ha) fires can engineer grazing lawns by concentrating herbivores on the post‐burn green flush; however, the persistence of such grazing lawns over the longer term and without repeated fire is unknown. We used high‐resolution Light Detection and Ranging (LiDAR) to investigate the long‐term effects of fire manipulation on short grass structure (height, cover, volume and spatial continuity) and grazing lawn establishment in Kruger National Park, South Africa. We analysed the effects of fire exclusion and experimental burns applied over a 7‐year period (2013–2019) followed by a 1‐year cessation of burning at varying spatial scales during the early and late dry seasons. Fires contributed a fourfold increase in short grass cover, regardless of fire season or size. The distribution of grass height differed significantly between fire‐induced grazing lawns and recently unburnt parts of the landscape where controlled fires were excluded over the experimental period. The volume (corresponding to bulk density) of short grass on the landscape responded strongly to fires, with grass volume <20 cm in height increasing with both early and late dry season fires. Early dry season fires caused larger and more homogeneous short grass patches. Furthermore, early dry season fires were more influential in increasing the cover of the shortest grass height class (1–5 cm). Synthesis and applications. Our results demonstrate that fire‐induced grazing lawns can persist over the longer term, even when fires are no longer applied, leading to the creation of vertical and horizontal heterogeneity in the grass layer. Small‐scale fires, therefore, represent a feasible management approach to expanding grazing lawn extent, potentially benefiting grazer coexistence and diversity.

Funder

Harvard University

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3