Updated DPYDHapB3 haplotype structure and implications for pharmacogenomic testing

Author:

Turner Amy J.1ORCID,Haidar Cyrine E.2ORCID,Yang Wenjian2ORCID,Boone Erin C.3ORCID,Offer Steven M.4,Empey Philip E.5ORCID,Haddad Andrew6ORCID,Tahir Saba7,Scharer Gunter1ORCID,Broeckel Ulrich1,Gaedigk Andrea38ORCID

Affiliation:

1. RPRD Diagnostics LLC Milwaukee Wisconsin USA

2. Department of Pharmacy and Pharmaceutical Sciences St. Jude Children's Research Hospital Memphis Tennessee USA

3. Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation Children's Mercy Research Institute (CMRI) Kansas City Missouri USA

4. Department of Molecular Pharmacology and Experimental Therapeutics Mayo Clinic Rochester Minnesota USA

5. Department of Pharmacy and Therapeutics University of Pittsburgh School of Pharmacy Pittsburgh Pennsylvania USA

6. Department of Pharmaceutical Sciences University of Pittsburgh School of Pharmacy Pittsburgh Pennsylvania USA

7. Medical College of Wisconsin, School of Pharmacy Milwaukee Wisconsin USA

8. School of Medicine University of Missouri‐Kansas City Kansas City Missouri USA

Abstract

AbstractThe DPYD gene encodes dihydropyrimidine dehydrogenase, the rate‐limiting enzyme for the metabolism of fluoropyrimidines 5‐fluorouracil and capecitabine. Genetic variants in DPYD have been associated with altered enzyme activity, therefore accurate detection and interpretation is critical to predict metabolizer status for individualized fluoropyrimidine therapy. The most commonly observed deleterious variation is the causal variant linked to the previously described HapB3 haplotype, c.1129‐5923C>G (rs75017182) in intron 10, which introduces a cryptic splice site. A benign synonymous variant in exon 11, c.1236G>A (rs56038477) is also linked to HapB3 and is commonly used for testing. Previously, these single‐nucleotide polymorphisms (SNPs) have been reported to be in perfect linkage disequilibrium (LD); therefore, c.1236G>A is often utilized as a proxy for the function‐altering intronic variant. Clinical genotyping of DPYD identified a patient who had c.1236G>A, but not c.1129‐5923C>G, suggesting that these two SNPs may not be in perfect LD, as previously assumed. Additional individuals with c.1236G>A, but not c.1129‐5923C>G, were identified in the Children's Mercy Data Warehouse and the All of Us Research Program version 7 cohort substantiating incomplete SNP linkage. Consequently, testing only c.1236G>A can generate false‐positive results in some cases and lead to suboptimal dosing that may negatively impact patient therapy and prospect of survival. Our data show that DPYD genotyping should include the functional variant c.1129‐5923C>G, and not the c.1236G>A proxy, to accurately predict DPD activity.

Publisher

Wiley

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3