Abnormal upconversion luminescence induced by defects and Er3+–Yb3+ distance change in Cs3GdGe3O9:Er3+/Yb3+ phosphors

Author:

Cui Hongqiang1,Cao Yongze1ORCID,Zhang Lei2,Li Ying3,Zhang Yuhang1,Li Lei1,Zhang Jinsu1,Chen Baojiu1

Affiliation:

1. Department of Physics Dalian Maritime University Dalian China

2. Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions High Magnetic Field Laboratory Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei China

3. Department of Environmental Information Navigation College, Dalian Maritime University Dalian China

Abstract

AbstractA series of Er3+/Yb3+ co‐doped Cs3GdGe3O9 (CGG) phosphors were prepared by solid‐phase sintering method, and the microstructure and upconversion luminescence (UCL) properties were tested by variable‐temperature X‐ray diffractometry and variable‐temperature spectrometer. Abnormal UCL phenomena were found, which include UCL intensity continuously increasing under 980 nm laser continuous irradiation and UCL thermal enhancement. After 10 min of continuous irradiation by 980 nm laser at 513 K, the UCL intensity increased 2.91 times compared with the initial UCL intensity. The phenomenon is due to the electron releasing of host defects. The green UCL intensity of CGG:0.1Er3+/0.2Yb3+ decreases at 303–423 K and increases at 423–723 K, which reaches 13.23 times compared with that at 423 K. The phenomenon is due to Er3+–Yb3+ distance change by temperature and phonon‐assisted transitions. In addition, the absolute temperature sensitivities of samples are calculated by luminescence intensity ratio technology, the maximum absolute sensitivity of CGG:0.1Er3+/0.4Yb3+ is 0.00691 K−1 at 546 K, and the maximum relative sensitivity of CGG:0.1Er3+/0.1Yb3+ is 0.01224 K−1 at 303 K. These results indicate that CGG:Er3+/Yb3+ phosphors can be used as a high‐temperature optical thermometer.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3