Affiliation:
1. Department of Neurosurgery Affiliated Hospital of Nantong University, Medical School of Nantong University Nantong China
2. Research Center of Clinical Medicine Affiliated Hospital of Nantong University Nantong China
3. Department of Neurosurgery, The Yancheng Clinical College of Xuzhou Medical University The First People's Hospital of Yancheng Yancheng China
Abstract
AbstractAimsThe current evidence demonstrates that mesenchymal stem cells (MSCs) hold therapeutic potential for ischemic stroke. However, it remains unclear how changes in the secretion of MSC cytokines following the overexpression of heme oxygenase‐1 (HO‐1) impact excessive inflammatory activation in a mouse ischemic stroke model. This study investigated this aspect and provided further insights.MethodsThe middle cerebral artery occlusion (MCAO) mouse model was established, and subsequent injections of MSC, MSCHO‐1, or PBS solutions of equal volume were administered via the mice's tail vein. Histopathological analysis was conducted on Days 3 and 28 post‐MCAO to observe morphological changes in brain slices. mRNA expression levels of various factors, including IL‐1β, IL‐6, IL‐17, TNF‐α, IL‐1Ra, IL‐4, IL‐10, TGF‐β, were quantified. The effects of MSCHO‐1 treatment on neurons, microglia, and astrocytes were observed using immunofluorescence after transplantation. The polarization direction of macrophages/microglia was also detected using flow cytometry.ResultsThe results showed that the expression of anti‐inflammatory factors in the MSCHO‐1 group increased while that of pro‐inflammatory factors decreased. Small animal fluorescence studies and immunofluorescence assays showed that the homing function of MSCsHO‐1 was unaffected, leading to a substantial accumulation of MSCsHO‐1 in the cerebral ischemic region within 24 h. Neurons were less damaged, activation and proliferation of microglia were reduced, and polarization of microglia to the M2 type increased after MSCHO‐1 transplantation. Furthermore, after transplantation of MSCsHO‐1, the mortality of mice decreased, and motor function improved significantly.ConclusionThe findings indicate that MSCs overexpressing HO‐1 exhibited significant therapeutic effects against hyper‐inflammatory injury after stroke in mice, ultimately promoting recovery after ischemic stroke.
Funder
Natural Science Foundation of Nantong City
Yancheng Science and Technology Bureau
Subject
Pharmacology (medical),Physiology (medical),Psychiatry and Mental health,Pharmacology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献