Differential SW16.1 allelic effects and genetic backgrounds contributed to increased seed weight after soybean domestication

Author:

Chen Xianlian1,Liu Cheng1,Guo Pengfei1,Hao Xiaoshuai1,Pan Yongpeng1,Zhang Kai1,Liu Wusheng2,Zhao Lizhi1,Luo Wei1,He Jianbo1,Su Yanzhu1,Jin Ting1,Jiang Fenfen1,Wang Si1,Liu Fangdong1,Xie Rongzhou1,Zhen Changgen1,Han Wei1,Xing Guangnan1,Wang Wubin1,Zhao Shancen3,Li Yan1ORCID,Gai Junyi1

Affiliation:

1. State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production Nanjing Agricultural University Nanjing 210095 China

2. Department of Horticultural Science North Carolina State University Raleigh North Carolina 27606 USA

3. BGI Genomics BGI‐Shenzhen Shenzhen 518083 China

Abstract

ABSTRACTAlthough seed weight has increased following domestication from wild soybean (Glycine soja) to cultivated soybean (Glycine max), the genetic basis underlying this change is unclear. Using mapping populations derived from chromosome segment substitution lines of wild soybean, we identified SW16.1 as the causative gene underlying a major quantitative trait locus controlling seed weight. SW16.1 encodes a nucleus‐localized LIM domain‐containing protein. Importantly, the GsSW16.1 allele from wild soybean accession N24852 had a negative effect on seed weight, whereas the GmSW16.1 allele from cultivar NN1138‐2 had a positive effect. Gene expression network analysis, reverse‐transcription quantitative polymerase chain reaction, and promoter‐luciferase reporter transient expression assays suggested that SW16.1 regulates the transcription of MT4, a positive regulator of seed weight. The natural variations in SW16.1 and other known seed weight genes were analyzed in soybean germplasm. The SW16.1 polymorphism was associated with seed weight in 247 soybean accessions, showing much higher frequency of positive‐effect alleles in cultivated soybean than in wild soybean. Interestingly, gene allele matrix analysis of the known seed weight genes revealed that G. max has lost 38.5% of the G. soja alleles and that most of the lost alleles had negative effects on seed weight. Our results suggest that eliminating negative alleles from G. soja led to a higher frequency of positive alleles and changed genetic backgrounds in G. max, which contributed to larger seeds in cultivated soybean after domestication from wild soybean. Our findings provide new insights regarding soybean domestication and should assist current soybean breeding programs.

Publisher

Wiley

Subject

Plant Science,General Biochemistry, Genetics and Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3