Canopy facilitation outweighs elemental allelopathy in a metalliferous system during an exceptionally dry year

Author:

Randé Hugo1ORCID,Michalet Richard1ORCID,Nemer David1ORCID,Delerue Florian1ORCID

Affiliation:

1. University of Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805 Pessac France

Abstract

Abstract The elemental allelopathy hypothesis states that the metal‐rich litter of hyper‐accumulating species may have a detrimental impact on neighbouring plants giving a competitive advantage to hyper‐accumulators. Here, we aim to specify the conditions of application of this hypothesis in realistic field conditions, and its relative importance compared to other positive effects found in metalliferous systems. We disentangled the litter‐induced elemental allelopathy and canopy effects of two metallophyte species (Arenaria multicaulis and Hutchinsia alpina) with different levels of leaf Zn and Cd accumulation on two ecotypes of Agrostis capillaris with different levels of metal tolerance. The experiment was conducted in two habitats with contrasting pollution levels in a former mining valley in the Pyrenees (France). The metallophyte species that accumulates more metals (Hutchinsia alpina) showed a strong elemental allelopathy effect on the target with lower metal tolerance in the habitat with lower pollution level, while the metallophyte species that accumulates less metals (Arenaria multicaulis) had no litter effect. Both metallophyte species had positive canopy effects likely due to improvement of micro‐climatic conditions. The drought that occurred during the experiment may have influenced these canopy effects, increasing their importance during the course of the study. For Hutchinsia alpina, the positive canopy effects were stronger than the negative litter effects, resulting in overall positive effects on both target ecotypes. Synthesis. Our results brought a better understanding of the occurrence of elemental allelopathy in metallophyte communities and its relative importance as compared to micro‐climatic facilitation in a global warming context.

Funder

Agence Nationale de la Recherche

Publisher

Wiley

Reference67 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3