Transient receptor potential vanilloid 1 inhibition reduces brain damage by suppressing neuronal apoptosis after intracerebral hemorrhage

Author:

Chen Chien‐Cheng12,Ke Chia‐Hua1,Wu Chun‐Hu3,Lee Hung‐Fu45,Chao Yuan6,Tsai Min‐Chien7,Shyue Song‐Kun3,Chen Szu‐Fu17ORCID

Affiliation:

1. Department of Physical Medicine and Rehabilitation Cheng Hsin General Hospital Taipei Taiwan, Republic of China

2. Graduate Institute of Gerontology and Health Care Management Chang Gung University of Science and Technology Taoyuan Taiwan, Republic of China

3. Institute of Biomedical Sciences, Academia Sinica Taipei Taiwan, Republic of China

4. Department of Neurosurgery Cheng Hsin General Hospital Taipei Taiwan, Republic of China

5. National Taipei University of Nursing and Health Sciences Taipei Taiwan, Republic of China

6. Department of Medical Education Chang Gung Memorial Hospital at Linkou Taoyuan Taiwan, Republic of China

7. Department of Physiology and Biophysics National Defense Medical Center Taipei Taiwan, Republic of China

Abstract

AbstractIntracerebral hemorrhage (ICH) induces a complex sequence of apoptotic cascades and inflammatory responses, leading to neurological impairment. Transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel with high calcium permeability, has been implicated in neuronal apoptosis and inflammatory responses. This study used a mouse ICH model and neuronal cultures to examine whether TRPV1 activation exacerbates brain damage and neurological deficits by promoting neuronal apoptosis and neuroinflammation. ICH was induced by injecting collagenase in both wild‐type (WT) C57BL/6 mice and TRPV1−/− mice. Capsaicin (CAP; a TRPV1 agonist) or capsazepine (a TRPV1 antagonist) was administered by intracerebroventricular injection 30 min before ICH induction in WT mice. The effects of genetic deletion or pharmacological inhibition of TRPV1 using CAP or capsazepine on motor deficits, histological damage, apoptotic responses, blood–brain barrier (BBB) permeability, and neuroinflammatory reactions were explored. The antiapoptotic mechanisms and calcium influx induced by TRPV1 inactivation were investigated in cultured hemin‐stimulated neurons. TRPV1 expression was upregulated in the hemorrhagic brain, and TRPV1 was expressed in neurons, microglia, and astrocytes after ICH. Genetic deletion of TRPV1 significantly attenuated motor deficits and brain atrophy for up to 28 days. Deletion of TRPV1 also reduced brain damage, neurodegeneration, microglial activation, cytokine expression, and cell apoptosis at 1 day post‐ICH. Similarly, the administration of CAP ameliorated brain damage, neurodegeneration, brain edema, BBB permeability, and cytokine expression at 1 day post‐ICH. In primary neuronal cultures, pharmacological inactivation of TRPV1 by CAP attenuated neuronal vulnerability to hemin‐induced injury, suppressed apoptosis, and preserved mitochondrial integrity in vitro. Mechanistically, CAP reduced hemin‐stimulated calcium influx and prevented the phosphorylation of CaMKII in cultured neurons, which was associated with reduced activation of P38 and c‐Jun NH2‐terminal kinase mitogen‐activated protein kinase signaling. Our results suggest that TRPV1 inhibition may be a potential therapy for ICH by suppressing mitochondria‐related neuronal apoptosis.

Funder

Ministry of Science and Technology, Taiwan

Cheng Hsin General Hospital Foundation

Publisher

Wiley

Subject

Neurology (clinical),Pathology and Forensic Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3