Functional microbiome assembly in food environments: addressing sustainable development challenges

Author:

Gu Yao1,Liu Tingting1,Al‐Ansi Waleed1,Qian Haifeng1ORCID,Fan Mingcong1,Li Yan1ORCID,Wang Li1ORCID

Affiliation:

1. State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food Jiangnan University Wuxi China

Abstract

AbstractThe global food system faces numerous challenges, creating an urgent need for sustainable reform. Functional microbiome assemblies offer transformative potential by endowing microbial foods with diverse, beneficial characteristics. These assemblies can dynamically influence specific food systems, positioning them as a promising approach for reshaping food production. However, the current applications and types of microbiome assemblies in foods remain limited, with a lack of effective screening and regulatory methods. This review introduces the functions and practical approaches for implementing microbiome assemblies in food systems alongside future directions for enhancing their applications. Several ecological studies evaluated how to regulate functional output and revealed that environmental conditions, which shape the niche for species survival, significantly influenced the functional output of microbiomes. Building on this theoretical foundation, this review presents a model for functional output comprising niche conditions, functional gene codes, and corresponding functional outputs. This model is illustrated with examples to explore sustainable applications and regulatory mechanisms for functional microbiome assemblies. By highlighting the roles of functional outputs in food systems and examining the potential for food environments to induce and modulate microbiome functions, this review provides a roadmap to address emerging challenges in food sustainability.

Funder

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Qinglan Project of Jiangsu Province of China

Earmarked Fund for China Agriculture Research System

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3