Autofocusing of laser lithography through the crosshair projection method

Author:

Wei Wei1,Wei Jingsong,Gao Tianyu,Xu Xiaozhong

Affiliation:

1. Shanghai University

Abstract

In laser direct writing lithography, there is not any image information from the sample surface, which makes it difficult to find the position of the focal plane. To overcome the problem, an autofocusing through the crosshair projection method is proposed in this work. The crosshair on the reticle is inserted into the lighting path and imaged onto the sample surface. The addition of the crosshair projection increases the image information from the sample surface, meeting the requirement for the image information in focusing and improving the focusing environment. Furthermore, this work presents what we believe to be a new division of the focusing curve based on the range of the perpendicular feature extracted from the crosshair projection during the focusing process. The perpendicular feature can be extracted from the crosshair projection in the focusing zone but not in the flat zone. Compared with the traditional division, this new division enables the use of the perpendicular feature to directly determine the zone of the current sample position and to find the focusing zone during the focusing process. This can completely filter out the interference of local fluctuations in the flat zone, greatly facilitating the sample focusing. The autofocusing process was designed based on this division, and experiments were carried out accordingly. The focusing accuracy is about 0.15 µm, which is in the range of the depth of focus of the optical system. The results show that the proposed method provides a good solution to achieve accurate focusing based on the crosshair projection image from the sample surface in laser lithography.

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3