Bayesian decision analysis for optimizing in-line metrology and defect inspection strategy for sustainable semiconductor manufacturing and an empirical study
Author:
Funder
National Science and Technology Council
Ministry of Science and Technology, Taiwan
Publisher
Elsevier BV
Reference44 articles.
1. Bousetta, A., & Cross, A. J. (2005). Adaptive sampling methodology for in-line defect inspection. Paper presented at the IEEE/SEMI Conference and Workshop on Advanced Semiconductor Manufacturing 2005.
2. Bayesian networks in fault diagnosis;Cai;IEEE Transactions on Industrial Informatics,2017
3. Intelligent sampling decision scheme based on the AVM system;Cheng;International Journal of Production Research,2015
4. Automated sampling decision scheme for the AVM system;Cheng;International Journal of Production Research,2016
5. Design of a sampling strategy for measuring and compensating for overlay errors in semiconductor manufacturing;Chien;International Journal of Production Research,2003
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. UBMF: Uncertainty-aware bayesian meta-learning framework for fault diagnosis with imbalanced industrial data;Knowledge-Based Systems;2025-07
2. Inline Defect and Logic and Memory Diagnostic Net Path Overlap Analysis Method;2025 36th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC);2025-05-05
3. Review of Visual Defect Detection Technology for Micro Coaxial Cable Harnesses;IEEE Access;2025
4. Barriers to manufacturing integrated circuit chips in the Indian semiconductor manufacturing industry using the grey influence analysis (GINA);Business Process Management Journal;2024-12-03
5. Complex product quality prediction based on ResNeSt model combining class-aware attention mechanism and dynamically updating class weights;Engineering Research Express;2024-12-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2025 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3