Predicting daily heating energy consumption in residential buildings through integration of random forest model and meta-heuristic algorithms
Author:
Publisher
Elsevier BV
Reference56 articles.
1. Forecasting the heat load of residential buildings with heat metering based on CEEMDAN-SVR;Gao;Energies,2020
2. Machine learning applications in urban building energy performance forecasting: a systematic review;Fathi;Renew Sustain Energy Rev,2020
3. Deep energy retrofit in public buildings—EBC annex 61 approach;Zhivov,2021
4. Modelling building energy consumption in China under different future scenarios;Guo;Energy,2021
5. Quantifying the uncertain effects of climate change on building energy consumption across the United States;Fonseca;Appl Energy,2020
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Development and application of an intelligent nitrogen removal diagnosis and optimization framework for WWTPs: Low-carbon and stable operation;Water Research;2024-11
2. Developing an integrated prediction model for daylighting, thermal comfort, and energy consumption in residential buildings based on the stacking ensemble learning algorithm;Building Simulation;2024-09-10
3. Adaptive Difference Least Squares Support Vector Regression for Urban Road Collapse Timing Prediction;Symmetry;2024-08-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3