Topsoil structure in no-tilled soils in the Rolling Pampa, Argentina

Author:

Alvarez C. R.,Taboada M. A.,Perelman S.,Morrás H. J. M.

Abstract

Some topsoil physical properties evolve unfavourably under continuous, no-till farming. On the Pampa, loam soils under no-till sometimes have lower infiltration rates than those conventionally tilled; this is due to the occurrence of platy and massive structures. In this study, we aimed to identify the soil management practices that promote platy structure formation, and explain the soil physical behaviour linked to the thickness of platy structures in relation to infiltration rate, bulk density and shear strength. Six fields with different numbers of years under agriculture and diverse previous crops (maize or wheat–soybean double crop) were sampled, distinguishing within each field headlands (areas with higher traffic) and centre (lower traffic). Twenty samples were taken at random along a 200-m transect to characterise soil structure (platy, granular or massive) and the thickness of the platy structure. Principal component analysis revealed linkages between previous crop and location in each field and type of structure. ANOVA showed a significant (P < 0.05) interaction of previous crop × location. The frequency and thickness of the platy structures were lower, and those of granular structures higher, under wheat–soybean double cropping and in the centre of the field. Greater thickness of the platy structure determined lower water infiltration rate (r = –0.337; P < 0.01) and greater soil shear strength (r = 0.297, P < 0.01). Micromorphological analysis indicated the dominance of massive and platy structure in the headlands and bioturbation in the centre of the fields with wheat–soybean double cropping. These results suggest bioturbation, crop-root binding and low machinery traffic as the main factors minimising soil evolution towards unfavourable structural types under no-till farming in the area.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3