Propofol Attenuates Peroxynitrite-mediated DNA Damage and Apoptosis in Cultured Astrocytes

Author:

Acquaviva Rosaria1,Campisi Agata2,Murabito Paolo1,Raciti Giuseppina3,Avola Roberto4,Mangiameli Salvatore5,Musumeci Ilenia1,Barcellona Maria Luisa6,Vanella Angelo6,Li Volti Giovanni1

Affiliation:

1. Research Associate.

2. Associate Professor.

3. Research Fellow.

4. Professor, Department of Chemical Sciences, Section of Biological Chemistry, University of Catania.

5. Associate Professor, Department of Surgery, Section of Anesthesiology.

6. Professor, Department of Biological Chemistry, Medical Chemistry and Molecular Biology.

Abstract

Background The concentration of peroxynitrite in the brain increases after central nervous system injuries. The authors hypothesized that propofol, because of its particular chemical structure, mitigates the effects of peroxynitrite-mediated oxidative stress and apoptosis by the induction of heme oxygenase (HO)-1 in primary cultured astroglial cells. Methods Primary cultured astroglial cells were incubated for 18 h with a known peroxynitrite donor (3 mm SIN-1) in the presence or absence of propofol (40 microm, 80 microm, 160 microm, and 1 mm). The protective effects of propofol were evaluated by 3(4,5-dimethyl-thiazol-2-yl)2,5-diphenyl-tetrazolium bromide cytotoxicity assay, lactic dehydrogenase release, DNA ladderization by Comet assay, and caspase-3 activation by Western blot analysis. Results Appropriate propofol concentrations (ranging from 40 microm to 1 mm) significantly increased HO-1 expression and attenuated SIN-1-mediated DNA ladderization and caspase-3 activation. The protective effects of propofol were mitigated by the addition of tin mesoporphyrin, a potent inhibitor of HO activity. The addition of a specific synthetic inhibitor of nuclear factor kappaB abolished propofol-mediated HO-1 induction, suggesting a possible role of this nuclear transcriptional factor in our experimental conditions. Conclusions The antioxidant properties of propofol can be partially attributed to its scavenging effect on peroxynitrite as well as to its ability to increase HO-1 expression at higher concentrations, a property that might be relevant to neuroprotection during anesthesia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference37 articles.

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3