Deep learning-assisted high-content screening identifies isoliquiritigenin as an inhibitor of DNA double-strand breaks for preventing doxorubicin-induced cardiotoxicity

Author:

Chen Xuechun,Liu Changtong,Zhao Hong,Zhong Yigang,Xu Yizhou,Wang Yi

Abstract

Abstract Background Anthracyclines including doxorubicin are essential components of many cancer chemotherapy regimens, but their cardiotoxicity severely limits their use. New strategies for treating anthracycline-induced cardiotoxicity (AIC) are still needed. Anthracycline-induced DNA double-strand break (DSB) is the major cause of its cardiotoxicity. However, DSB-based drug screening for AIC has not been performed possibly due to the limited throughput of common assays for detecting DSB. To discover new therapeutic candidates for AIC, here we established a method to rapidly visualize and accurately evaluate the intranuclear anthracycline-induced DSB, and performed a screening for DSB inhibitors. Results First, we constructed a cardiomyocyte cell line stably expressing EGFP-53BP1, in which the formation of EGFP-53BP1 foci faithfully marked the doxorubicin-induced DSB, providing a faster and visible approach to detecting DSB. To quantify the DSB, we used a deep learning-based image analysis method, which showed the better ability to distinguish different cell populations undergoing different treatments of doxorubicin or reference compounds, compared with the traditional threshold-based method. Subsequently, we applied the deep learning-assisted high-content screening method to 315 compounds and found three compounds (kaempferol, kaempferide, and isoliquiritigenin) that exert cardioprotective effects in vitro. Among them, the protective effect of isoliquiritigenin is accompanied by the up-regulation of HO-1, down-regulation of peroxynitrite and topo II, and the alleviation of doxorubicin-induced DSB and apoptosis. The results of animal experiments also showed that isoliquiritigenin maintained the myocardial tissue structure and cardiac function in vivo. Moreover, isoliquiritigenin did not affect the killing of HeLa and MDA-MB-436 cancer cells by doxorubicin and thus has the potential to be a lead compound to exert cardioprotective effects without affecting the antitumor effect of doxorubicin. Conclusions Our findings provided a new method for the drug discovery for AIC, which combines phenotypic screening with artificial intelligence. The results suggested that isoliquiritigenin as an inhibitor of DSB may be a promising drug candidate for AIC.

Funder

Construction Fund of Key Medical Disciplines of Hangzhou

National Natural Science Foundation of China

Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3