Inflammatory mechanisms in post-traumatic osteoarthritis: a role for CaMKK2

Author:

Riggs Keegan C.12,Sankar Uma12

Affiliation:

1. Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA

2. Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA

Abstract

Post-traumatic osteoarthritis (PTOA) is a multifactorial disease of the cartilage, synovium, and subchondral bone resulting from direct joint trauma and altered joint mechanics after traumatic injury. There are no current disease-modifying therapies for PTOA, and early surgical interventions focused on stabilizing the joint do not halt disease progression. Chronic pain and functional disability negatively affect the quality of life and take an economic toll on affected patients. While multiple mechanisms are at play in disease progression, joint inflammation is a key contributor. Impact-induced mitochondrial dysfunction and cell death or altered joint mechanics after trauma culminate in inflammatory cytokine release from synoviocytes and chondrocytes, cartilage catabolism, suppression of cartilage anabolism, synovitis, and subchondral bone disease, highlighting the complexity of the disease. Current understanding of the cellular and molecular mechanisms underlying the disease pathology has allowed for the investigation of a variety of therapeutic strategies that target unique apoptotic and/or inflammatory processes in the joint. This review provides a concise overview of the inflammatory and apoptotic mechanisms underlying PTOA pathogenesis and identifies potential therapeutic targets to mitigate disease progression. We highlight Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2), a serine/threonine protein kinase that was recently identified to play a role in murine and human osteoarthritis pathogenesis by coordinating chondrocyte inflammatory responses and apoptosis. Given its additional effects in regulating macrophage inflammatory signaling and bone remodeling, CaMKK2 emerges as a promising disease-modifying therapeutic target against PTOA.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3